Skip to main content

High Pressures and Eukaryotes

  • Reference work entry
Extremophiles Handbook
  • 3646 Accesses

General Effects of High Hydrostatic Pressures in Biological Systems

The effects of high hydrostatic pressure in biological systems have been mainly investigated from the following perspectives: (1) structural perturbation of macromolecules such as proteins and lipids, and kinetic analysis of biochemical reactions; (2) microbial adaptation to high pressure in mesophiles and piezophiles; and (3) inactivation of food-spoiling microbes, and applications in nonthermal food processing. During the past decades, an increasing number of innovative high-pressure studies on biological processes have been performed by applying advanced techniques of genetics and molecular biology in bacteria and yeasts as model organisms (Horikoshi 1998; Abe et al. 1999; Abe and Horikoshi 2001; Bartlett 2002; Abe 2004, 2007a; Aertsen et al. 2009). Recent studies in this field have revealed the potential of a broad range of microbes to adapt and develop resistance to increasing hydrostatic pressure and have shown...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Horikoshi K (1995) Hydrostatic pressure promotes the acidification of vacuoles in Saccharomyces cerevisiae. FEMS Microbiol Lett 130:307–312

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (1997) Vacuolar acidification in Saccharomyces cerevisiae induced by elevated hydrostatic pressure is transient and is mediated by vacuolar H+-ATPase. Extremophiles 1:89–93

    Article  PubMed  CAS  Google Scholar 

  • Abe F (1998) Hydrostatic pressure enhances vital staining with carboxyfluorescein or carboxydichlorofluorescein in Saccharomyces cerevisiae: efficient detection of labeled yeasts by flow cytometry. Appl Environ Microbiol 64:1139–1142

    PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (1998) Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-) physiology. Extremophiles 2:223–228

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (2000) Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol Cell Biol 20:8093–8102

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Iida H (2003) Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol Cell Biol 23:7566–7584

    Article  PubMed  CAS  Google Scholar 

  • Abe F (2004) Piezophysiology of yeast –Occurrence and significance. Cell Mol Biol 50:437–445

    PubMed  CAS  Google Scholar 

  • Abe F (2007a) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357

    Article  PubMed  CAS  Google Scholar 

  • Abe F (2007b) Induction of DAN/TIR yeast cell wall mannoprotein genes in response to high hydrostatic pressure and low temperature. FEBS Lett 581:4993–4998

    Article  PubMed  CAS  Google Scholar 

  • Abe F, Minegishi H (2008) Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178:851–872

    Article  PubMed  CAS  Google Scholar 

  • Abramova N, Sertil O, Mehta S, Lowry CV (2001a) Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae. J Bacteriol 183:2881–2887

    Article  PubMed  CAS  Google Scholar 

  • Abramova NE, Cohen BD, Sertil O, Kapoor R, Davies KJ, Lowry CV (2001b) Regulatory mechanisms controlling expression of the DAN/TIR mannoprotein genes during anaerobic remodeling of the cell wall in Saccharomyces cerevisiae. Genetics 157:1169–1177

    PubMed  CAS  Google Scholar 

  • Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    Article  PubMed  CAS  Google Scholar 

  • Albert TK, Hanzawa H, Legtenberg YI, de Ruwe MJ, van den Heuvel FA, Collart MA, Boelens R, Timmers HT (2002) Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J 21:355–364

    Article  PubMed  CAS  Google Scholar 

  • Balny C, Masson P, Heremans K (2002) High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim Biophys Acta 1595:3–10

    Article  PubMed  CAS  Google Scholar 

  • Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381

    Article  PubMed  CAS  Google Scholar 

  • Baudin A, Ozier-Kalogeropoulos O, Denouel A, Lacroute F, Cullin C (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329–3330

    Article  PubMed  CAS  Google Scholar 

  • Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Ingram MF, Rosal PH, Graham TR (1999) Role for Drs2p, a P-type ATPase and potential aminophospholipid translocase, in yeast late Golgi function. J Cell Biol 147:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Collart MA (2003) Global control of gene expression in yeast by the Ccr4-Not complex. Gene 313:1–16

    Article  PubMed  CAS  Google Scholar 

  • de Smedt H, Borghgraef R, Ceuterick F, Heremans K (1979) Pressure effects on lipid-protein interactions in (Na+ + K+)-ATPase. Biochim Biophys Acta 556:479–489

    Article  PubMed  Google Scholar 

  • Diehl P, Schmitt M, Blumelhuber G, Frey B, Van Laak S, Fischer S, Muehlenweg B, Meyer-Pittroff R, Gollwitzer H, Mittelmeier W (2003) Induction of tumor cell death by high hydrostatic pressure as a novel supporting technique in orthopedic surgery. Oncol Rep 10:1851–1855

    PubMed  Google Scholar 

  • Diehl P, Schmitt M, Schauwecker J, Eichelberg K, Gollwitzer H, Gradinger R, Goebel M, Preissner KT, Mittelmeier W, Magdolen U (2005) Effect of high hydrostatic pressure on biological properties of extracellular bone matrix proteins. Int J Mol Med 16:285–289

    PubMed  CAS  Google Scholar 

  • Domitrovic T, Fernandes CM, Boy-Marcotte E, Kurtenbach E (2006) High hydrostatic pressure activates gene expression through Msn2/4 stress transcription factors which are involved in the acquired tolerance by mild pressure precondition in Saccharomyces cerevisiae. FEBS Lett 580:6033–6038

    Article  PubMed  CAS  Google Scholar 

  • Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15–26

    Article  PubMed  CAS  Google Scholar 

  • Fernandes PM, Domitrovic T, Kao CM, Kurtenbach E (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett 556:153–160

    Article  PubMed  CAS  Google Scholar 

  • Frey B, Franz S, Sheriff A, Korn A, Bluemelhuber G, Gaipl US, Voll RE, Meyer-Pittroff R, Herrmann M (2004) Hydrostatic pressure induced death of mammalian cells engages pathways related to apoptosis or necrosis. Cell Mol Biol 50:459–467 (Noisy-le-grand)

    PubMed  CAS  Google Scholar 

  • Frey B, Janko C, Ebel N, Meister S, Schlucker E, Meyer-Pittroff R, Fietkau R, Herrmann M, Gaipl US (2008) Cells under pressure - treatment of eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death. Curr Med Chem 15:2329–2336

    Article  PubMed  CAS  Google Scholar 

  • Gekko K (2002) Compressibility gives new insight into protein dynamics and enzyme function. Biochim Biophys Acta 1595:382–386

    Article  PubMed  CAS  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Nakatomi Y, Shimada S (1992) Direct induction of tetraploids or homozygous diploids in the industrial yeast Saccharomyces cerevisiae by hydrostatic pressure. Curr Genet 22:371–376

    Article  PubMed  CAS  Google Scholar 

  • Heremans K, Smeller L (1998) Protein structure and dynamics at high pressure. Biochim Biophys Acta 1386:353–370

    Article  PubMed  CAS  Google Scholar 

  • Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    Article  PubMed  CAS  Google Scholar 

  • Hiraki T, Abe F (2010) Overexpression of Sna3 stabilizes tryptophan permease Tat2, potentially competing for the WW domain of Rsp5 ubiquitin ligase with its binding protein Bul1. FEBS Lett 584:55–60

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1998) Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr Opin Microbiol 1:291–295

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru D, Sa-Carvalho D, Silva JL (2004) Pressure-inactivated FMDV: a potential vaccine. Vaccine 22:2334–2339

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Kaul SC, Obuchi K, Komatsu Y (1991) Induction of barotolerance by heat shock treatment in yeast. FEMS Microbiol Lett 64:325–328

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S, Komatsu Y (1997) Effect of temperature on the role of Hsp104 and trehalose in barotolerance of Saccharomyces cerevisiae. FEBS Lett 416:1–5

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K (2000) Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 66:5182–5185

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K (2001) Contribution of Hsc70 to barotolerance in the yeast Saccharomyces cerevisiae. Extremophiles 5:417–421

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Shimizu H, Odani M, Komatsu Y (2003) Piezophysiology of genome wide gene expression levels in the yeast Saccharomyces cerevisiae. Extremophiles 7:291–298

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Odani M, Ishidou E, Kitagawa E (2005) Adaptation of Saccharomyces cerevisiae to high hydrostatic pressure causing growth inhibition. FEBS Lett 579:2847–2852

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma Y, Ohsumi Y, Anraku Y (1981) Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 256:10859–10863

    PubMed  CAS  Google Scholar 

  • Katzmann DJ, Babst M, Emr SD (2001) Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106:145–155

    Article  PubMed  CAS  Google Scholar 

  • Kawai R, Fujita K, Iwahashi H, Komatsu Y (1999) Direct evidence for the intracellular localization of Hsp104 in Saccharomyces cerevisiae by immunoelectron microscopy. Cell Stress Chaperones 4:46–53

    PubMed  CAS  Google Scholar 

  • Kishimoto T, Yamamoto T, Tanaka K (2005) Defects in structural integrity of ergosterol and the Cdc50p-Drs2p putative phospholipid translocase cause accumulation of endocytic membranes, onto which actin patches are assembled in yeast. Mol Biol Cell 16:5592–5609

    Article  PubMed  CAS  Google Scholar 

  • Kobori H, Sato M, Tameike A, Hamada K, Shimada S, Osumi M (1995) Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol Lett 132:253–258

    Article  PubMed  CAS  Google Scholar 

  • Liu HY, Badarinarayana V, Audino DC, Rappsilber J, Mann M, Denis CL (1998) The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively. EMBO J 17:1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zou L, Wang J, Schuler C, Zhao Z, Li X, Zhang J, Liu Y (2009) Hydrostatic pressure promotes Wnt10b and Wnt4 expression dependent and independent on ERK signaling in early-osteoinduced MSCs. Biochem Biophys Res Commun 379:505–509

    Article  PubMed  CAS  Google Scholar 

  • Lorenz RT, Parks LW (1992) Cloning, sequencing, and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae. DNA Cell Biol 11:685–692

    Article  PubMed  CAS  Google Scholar 

  • Maillet L, Tu C, Hong YK, Shuster EO, Collart MA (2000) The essential function of Not1 lies within the Ccr4-Not complex. J Mol Biol 303:131–143

    Article  PubMed  CAS  Google Scholar 

  • Malki A, Caldas T, Abdallah J, Kern R, Eckey V, Kim SJ, Cha SS, Mori H, Richarme G (2005) Peptidase activity of the Escherichia coli Hsp31 chaperone. J Biol Chem 280:14420–14426

    Article  PubMed  CAS  Google Scholar 

  • McNatt MW, McKittrick I, West M, Odorizzi G (2007) Direct binding to Rsp5 mediates ubiquitin-independent sorting of Sna3 via the multivesicular body pathway. Mol Biol Cell 18:697–706

    Article  PubMed  CAS  Google Scholar 

  • Misu K, Fujimura-Kamada K, Ueda T, Nakano A, Katoh H, Tanaka K (2003) Cdc50p, a conserved endosomal membrane protein, controls polarized growth in Saccharomyces cerevisiae. Mol Biol Cell 14:730–747

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Abe F (2004) Multiple ubiquitin-specific protease genes are involved in degradation of yeast tryptophan permease Tat2 at high pressure. FEMS Microbiol Lett 239:171–179

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Minegishi H, Usami R, Abe F (2006) Systematic analysis of HSP gene expression and effects on cell growth and survival at high hydrostatic pressure in Saccharomyces cerevisiae. Extremophiles 10:279–284

    Article  PubMed  CAS  Google Scholar 

  • Nagayama A, Kato C, Abe F (2004) The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions. Extremophiles 8:143–149

    Article  PubMed  CAS  Google Scholar 

  • Natarajan P, Wang J, Hua Z, Graham TR (2004) Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc Natl Acad Sci USA 101:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Otake T, Kawahata T, Mori H, Kojima Y, Hayakawa K (2005) Novel method of inactivation of human immunodeficiency virus type 1 by the freeze pressure generation method. Appl Microbiol Biotechnol 67:746–751

    Article  PubMed  CAS  Google Scholar 

  • Palhano FL, Orlando MT, Fernandes PM (2004) Induction of baroresistance by hydrogen peroxide, ethanol and cold-shock in Saccharomyces cerevisiae. FEMS Microbiol Lett 233:139–145

    Article  PubMed  CAS  Google Scholar 

  • Parks LW, Smith SJ, Crowley JH (1995) Biochemical and physiological effects of sterol alterations in yeast -a review. Lipids 30:227–230

    Article  PubMed  CAS  Google Scholar 

  • Perrier-Cornet JM, Marechal PA, Gervais P (1995) A new design intended to relate high pressure treatment to yeast cell mass transfer. J Biotechnol 41:49–58

    Article  PubMed  CAS  Google Scholar 

  • Perrier-Cornet JM, Hayert M, Gervais P (1999) Yeast cell mortality related to a high-pressure shift: occurrence of cell membrane permeabilization. J Appl Microbiol 87:1–7

    Article  PubMed  CAS  Google Scholar 

  • Reggiori F, Pelham HR (2001) Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J 20:5176–5186

    Article  PubMed  CAS  Google Scholar 

  • Rosin MP, Zimmerman AM (1977) The induction of cytoplasmic petite mutants of Saccharomyces cerevisiae by hydrostatic pressure. J Cell Sci 26:373–385

    PubMed  CAS  Google Scholar 

  • Royer CA (2002) Revisiting volume changes in pressure-induced protein unfolding. Biochim Biophys Acta 1595:201–209

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Fujimura-Kamada K, Furuta N, Kato U, Umeda M, Tanaka K (2004) Cdc50p, a protein required for polarized growth, associates with the Drs2p P-type ATPase implicated in phospholipid translocation in Saccharomyces cerevisiae. Mol Biol Cell 15:3418–3432

    Article  PubMed  CAS  Google Scholar 

  • Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, Kobayashi H, Kishida A, Mochizuki M (2009) In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Mol Vis 15:2022–2028

    PubMed  CAS  Google Scholar 

  • Sato M, Kobori H, Ishijima SA, Feng ZH, Hamada K, Shimada S, Osumi M (1996) Schizosaccharomyces pombe is more sensitive to pressure stress than Saccharomyces cerevisiae. Cell Struct Funct 21:167–174

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Hasegawa K, Shimada S, Osumi M (1999) Effects of pressure stress on the fission yeast Schizosaccharomyces pombe cold-sensitive mutant nda3. FEMS Microbiol Lett 176:31–38

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1993) Structure, function and regulation of plasma membrane H(+)-ATPase. FEBS Lett 325:108–111

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Andou M, Naito N, Yamada N, Osumi M, Hayashi R (1993) Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 40:123–131

    Article  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  PubMed  CAS  Google Scholar 

  • Stawiecka-Mirota M, Pokrzywa W, Morvan J, Zoladek T, Haguenauer-Tsapis R, Urban-Grimal D, Morsomme P (2007) Targeting of Sna3p to the endosomal pathway depends on its interaction with Rsp5p and multivesicular body sorting on its ubiquitylation. Traffic 8:1280–1296

    Article  PubMed  CAS  Google Scholar 

  • Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104:377–386

    Article  PubMed  CAS  Google Scholar 

  • Wach A, Brachat A, Pohlmann R, Philippsen P (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808

    Article  PubMed  CAS  Google Scholar 

  • Winter R, Dzwolak W (2004) Temperature-pressure configurational landscape of lipid bilayers and proteins. Cell Mol Biol 50:397–417 (Noisy-le-grand)

    PubMed  CAS  Google Scholar 

  • Yashiroda H, Oguchi T, Yasuda Y, Toh-E A, Kikuchi Y (1996) Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol Cell Biol 16:3255–3263

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiyoshi Abe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Abe, F. (2011). High Pressures and Eukaryotes. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_32

Download citation

Publish with us

Policies and ethics