Piezophysiology of the Model Bacterium Escherichia coli

  • Dietrich Vanlint
  • Chris W. Michiels
  • Abram Aertsen
Reference work entry


Pressure is a thermodynamical parameter that varies greatly throughout the biosphere. From an average of 0.1 MPa at the surface of the earth, pressure increases to 110 MPa at the deepest point of the ocean, the Challenger Deep, located about 11 km below sea level in the Mariana Trench (Abe et al. 1999; Lauro and Bartlett 2008). These deep sea niches are populated by piezophilic (i.e., pressure loving) bacteria which require these high pressures for optimal growth. Conversely, growth of mesophilic with respect to pressure-bacteria such as Escherichia coli is accompanied by filamentation and slows down under high pressure up to about 50 MPa, after which it completely halts (Zobell and Cobet 1962, 1964). These simple observations indicate that the cellular machinery in these different microorganisms has acquired specific adaptations to function optimally at the pressure prevailing at the surface of the earth or in the depths of the oceans in the course of evolution (Yayanos 1995...


Alternative Sigma Factor Bacterial Inactivation Essential Cellular Process Cold Shock Response Reduce Water Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



D.V. holds a Ph.D. grant from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). A.A. acknowledges financial support from Research Foundation – Flanders (FWO-Vlaanderen; Grant 1.5258.08N).


  1. Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357PubMedCrossRefGoogle Scholar
  2. Abe F, Horikoshi K (1998) Analysis of intracellular pH in Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in (baro-) piezo-physiology. Extremophiles 2:223–228PubMedCrossRefGoogle Scholar
  3. Abe F, Kato C, Horikoshi K (1999) Pressure-regulated metabolism in microorganisms. Trends Microbiol 7:447–453PubMedCrossRefGoogle Scholar
  4. Aertsen A, De Spiegeleer P, Vanoirbeek K, Lavilla M, Michiels CW (2005a) Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 71:2226–2231PubMedCrossRefGoogle Scholar
  5. Aertsen A, Faster D, Michiels CW (2005b) Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure. Appl Environ Microbiol 71:1155–1162PubMedCrossRefGoogle Scholar
  6. Aertsen A, Michiels CW (2005a) Mrr instigates the SOS response after high pressure stress in Escherichia coli. Mol Microbiol 58:1381–1391PubMedCrossRefGoogle Scholar
  7. Aertsen A, Michiels CW (2005b) SulA-dependent hypersensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Res Microbiol 156:233–237PubMedCrossRefGoogle Scholar
  8. Aertsen A, Michiels CW (2008) Cellular impact of sublethal pressures on Escherichia coli. In: Michiels CW, Bartlett DH, Aertsen A (eds) High pressure microbiology. ASM Press, Washington, pp 87–100Google Scholar
  9. Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW (2004a) An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186:6133–6141PubMedCrossRefGoogle Scholar
  10. Aertsen A, Vanoirbeek K, De Spiegeleer P, Sermon J, Hauben KJ, Farewell A, Nyström T, Michiels CW (2004b) Heat shock protein-mediated resistance to high hydrostatic pressure in Escherichia coli. Appl Environ Microbiol 70:2660–2666PubMedCrossRefGoogle Scholar
  11. Aldsworth TG, Sharman RL, Dodd CE (1999) Bacterial suicide through stress. Cell Mol Life Sci 56:378–383PubMedCrossRefGoogle Scholar
  12. Aldsworth TG, Sharman RL, Dodd CE, Stewart GS (1998) A competitive microflora increases the resistance of Salmonella typhimurium to inimical processes: evidence for a suicide response. Appl Environ Microbiol 64:1323–1327PubMedGoogle Scholar
  13. Alpas H, Kalchayanand N, Bozoglu F, Sikes A, Dunne CP, Ray B (1999) Variation in resistance to hydrostatic pressure among strains of food-borne pathogens. Appl Environ Microbiol 65:4248–4251PubMedGoogle Scholar
  14. Alpas H, Kalchayanand N, Bozoglu F, Ray B (2000) Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int J Food Microbiol 60(1):33–42CrossRefGoogle Scholar
  15. Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9PubMedCrossRefGoogle Scholar
  16. Balny C, Masson P (1993) Effect of high pressure on proteins. Food Rev Int 9(4):611–628CrossRefGoogle Scholar
  17. Balny C, Masson P, Heremans K (2002) High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim Biophys Acta 1595:3–10PubMedCrossRefGoogle Scholar
  18. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595:367–381PubMedCrossRefGoogle Scholar
  19. Bartlett DH, Kato C, Horikoshi K (1995) High pressure influences on gene and protein expression. Res Microbiol 146:697–706PubMedCrossRefGoogle Scholar
  20. Benito A, Ventoura G, Casadei M, Robinson T, Mackey BM (1999) Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl Environ Microbiol 65:1564–1569PubMedGoogle Scholar
  21. Braganza LF, Worcester DL (1986) Structural changes in lipid bilayers and biological membranes caused hydrostatic pressure. Biochemistry 25:7484–7488PubMedCrossRefGoogle Scholar
  22. Butala M, Zgur-Bertok D, Busby SJ (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66:82–93PubMedCrossRefGoogle Scholar
  23. Casadei MA, Manas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972PubMedCrossRefGoogle Scholar
  24. Cheftel J-C (1992) Effects of high hydrostatic pressure on food constituents: an overview. In: Balny C, Heremans K, Masson P (eds) High pressure and biotechnology, Colloque INSERM, vol 224. John Libbey Eurotext, Montrouge, pp 195–209Google Scholar
  25. Colaco CALS, Smith CJS, Sen S, Roser DH, Newman Y, Ring S, Roser BJ (1994) Chemistry of protein stabilization by trehalose. In: Cleland JL, Langer R (eds) Formulation and delivery of proteins and peptides. American Chemical Society, Washington, pp 222–240CrossRefGoogle Scholar
  26. Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD (2008) High-pressure processing-effects on microbial food safety and food quality. FEMS Microbiol Lett 281:1–9PubMedCrossRefGoogle Scholar
  27. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158:41–64PubMedGoogle Scholar
  28. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703PubMedCrossRefGoogle Scholar
  29. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103PubMedCrossRefGoogle Scholar
  30. Dijksterhuis J, Samson RA (2006) Activation of ascospores by novel preservation techniques. Adv Exp Med Biol 571:247–260PubMedCrossRefGoogle Scholar
  31. Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400PubMedCrossRefGoogle Scholar
  32. Eloe E, Lauro F, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 74:6298–6305PubMedCrossRefGoogle Scholar
  33. Erickson HP, Stoffler D (1996) Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to alpha/beta and gamma tubulin. J Cell Biol 135:5–8PubMedCrossRefGoogle Scholar
  34. Erijman L, Clegg R (1995) Heterogeneity of Escherichia coli RNA polymerase revealed by high pressure. J Mol Biol 253:259–265PubMedCrossRefGoogle Scholar
  35. Erijman L, Clegg R (1998) Reversible stalling of transcription elongation complexes by high pressure. Biophys J 75:453–462PubMedCrossRefGoogle Scholar
  36. Erill I, Campoy S, Barbé J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656PubMedCrossRefGoogle Scholar
  37. Farkas DF, Hoover DG (2000) High pressure processing. J Food Sci Suppl 65:47–64CrossRefGoogle Scholar
  38. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, WashingtonGoogle Scholar
  39. Garcia-Graells C, Hauben KJ, Michiels CW (1998) High-pressure inactivation and sublethal injury of pressure-resistant Escherichia coli mutants in fruit juices. Appl Environ Microbiol 64:1566–1568PubMedGoogle Scholar
  40. García-Graells C, Masschalck B, Michiels CW (1999) Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J Food Prot 62:1248–1254PubMedGoogle Scholar
  41. Gervilla R, Capellas M, Ferragut V, Guamis B (1997) Effect of high hydrostatic pressure on Listeria innocua 910 CECT inoculated into Ewe’s milk. J Food Prot 60:33–37PubMedGoogle Scholar
  42. Gross M, Lehle K, Jaenicke R, Nierhaus K (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468PubMedCrossRefGoogle Scholar
  43. Hauben KJ, Bartlett DH, Soontjens CC, Cornelis K, Wuytack EY, Michiels CW (1997) Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl Environ Microbiol 63:945–950PubMedGoogle Scholar
  44. Hauben KJ (1998) High hydrostatic pressure as a hurdle in food preservation: inactivation and sublethal injury of Escherichia coli. PhD Dissertation, Faculty of Agricultural and Apllied Biological Sciences, Katholieke Universiteit LeuvenGoogle Scholar
  45. Hauben KJ, Bernaerts K, Michiels CW (1998) Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. J Appl Microbiol 85:678–684PubMedCrossRefGoogle Scholar
  46. Heremans K (2001) The effect of pressures on biomaterials. In: Hendrickx MEG, Knorr D (eds) Ultrahigh pressure treatments of foods. Kluwer Academic/Plenum, New York, pp 23–51CrossRefGoogle Scholar
  47. Hildebrand CE, Pollard EC (1972) Hydrostatic pressure effects on protein synthesis. Biophys J 12:1235–1250PubMedCrossRefGoogle Scholar
  48. Hirsch M, Elliot T (2002) Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli. J Bacteriol 184(18):5077–5087PubMedCrossRefGoogle Scholar
  49. Ishii A, Oshima T, Sato T, Nakasone K, Mori H, Kato C (2005) Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9:65–73PubMedCrossRefGoogle Scholar
  50. Ishii A, Sato T, Wachi M, Nagai K, Kato C (2004) Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:1965–1972PubMedCrossRefGoogle Scholar
  51. Janion C (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int J Biol Sci 4:338–344PubMedCrossRefGoogle Scholar
  52. Jones PG, VanBogelen RA, Neidhardt FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 169:2092–2095PubMedGoogle Scholar
  53. Kalchayand N, Sikes A, Dunne C, Ray B (1998) Factors influencing death and injury of foodborne pathogens by hydrostatic pressure-pasteurization. Food Microbiol 15(2):207–214CrossRefGoogle Scholar
  54. Karatzas KA, Kets E, Smid E, Bennik MH (2001) The combined action of carvacrol and high hydrostatic pressure on Listeria monocytogenes Scott A. J Appl Microbiol 90:463–469PubMedCrossRefGoogle Scholar
  55. Karatzas KA, Bennik MH (2002) Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl Environ Microbiol 68:3183–3189PubMedCrossRefGoogle Scholar
  56. Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH (2003) The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol Microbiol 49:1227–1238PubMedCrossRefGoogle Scholar
  57. Kato C, Sato T, Smorawinska M, Horikoshi K (1994) High pressure conditions stimulate expression of chloramphenicol acetyltransferase regulated by the lac promoter in Escherichia coli. FEMS Microbiol Lett 122:91–96PubMedCrossRefGoogle Scholar
  58. Kawano H, Nakasone K, Matsumoto M, Yoshida Y, Usami R, Kato C, Abe F (2004) Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8:367–375PubMedCrossRefGoogle Scholar
  59. Kawarai T, Wachi M, Ogino H, Furukawa S, Suzuki K, Ogihara H, Yamasaki M (2004) SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Appl Microbiol Biotechnol 64:255–262PubMedCrossRefGoogle Scholar
  60. Knorr D (1999) Novel approaches in food-processing technology: new technologies for preserving foods and modifying function. Curr Opin Biotechnol 10:485–491PubMedCrossRefGoogle Scholar
  61. Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles 12:15–25PubMedCrossRefGoogle Scholar
  62. Linton M, McClements JM, Patterson MF (1999) Survival of Escherichia coli O157:H7 during storage in pressure-treated orange juice. J Food Prot 62:1038–1040PubMedGoogle Scholar
  63. Little JW (1993) LexA cleavage and other self-processing reactions. J Bacteriol 175:4943–4950PubMedGoogle Scholar
  64. Lockhart A, Kendrick-Jones J (1998) Interaction of the N-terminal domain of MukB with the bacterial tubulin homologue FtsZ. FEBS Lett 430:278–282PubMedCrossRefGoogle Scholar
  65. Macdonald AG (1984) The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos Trans R Soc Lond B Biol Sci 304:47–68PubMedCrossRefGoogle Scholar
  66. Mackey BM, Forestière K, Isaacs NS, Stenning R, Brooker B (1994) The effect of high hydrostatic pressure on Salmonella Thompson and Listeria monocytogenes examined by electron microscopy. Lett Appl Microbiol 19:429–432CrossRefGoogle Scholar
  67. Malone AK, Chung YK, Yousef AE (2006) Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72:2661–2671PubMedCrossRefGoogle Scholar
  68. Mañas P, Mackey BM (2004) Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Appl Environ Microbiol 70:1545–1554PubMedCrossRefGoogle Scholar
  69. Marquis RE (1976) High-pressure microbial physiology. Adv Microb Physiol 14:159–241PubMedCrossRefGoogle Scholar
  70. Marquis RE, Bender GR (1980) Isolation of a variant of Streptococcus faecalis with enhanced barotolerance. Can J Microbiol 26:371–376PubMedCrossRefGoogle Scholar
  71. Marquis RE, Bender GR (1987) Barophysiology of prokaryotes and proton-translocating ATPases. In: Jannasch HW, Marquis RE, Zimmerman AM (eds) Current perspectives in high-pressure biology. Academic, London, pp 65–73Google Scholar
  72. Masschalck B, Garcia-Graells C, Van Haver E, Michiels CW (2000) Inactivation of high pressure resistant Escherichia coli by lysozyme and nisin under high pressure. Innovative Food Sci Emerg Technol 1:39–47CrossRefGoogle Scholar
  73. Meganathan R, Marquis RE (1973) Loss of bacterial motility under pressure. Nature 246:525–527PubMedCrossRefGoogle Scholar
  74. Molina-Höppner A, Doster W, Vogel RF, Gänzle MG (2004) Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70:2013–2020PubMedCrossRefGoogle Scholar
  75. Nakashima K, Horikoshi K, Mizuno T (1995) Effect of hydrostatic pressure on the synthesis of outer membrane proteins in Escherichia coli. Biosci Biotechnol Biochem 59:130–132PubMedCrossRefGoogle Scholar
  76. Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: and in vivo study using differential scanning calorimetry. Microbiology 145(2):419–425PubMedCrossRefGoogle Scholar
  77. Noma S, Hayakawa I (2003) Barotolerance of Staphylococcus aureus is increased by incubation at below 0 degrees C prior to hydrostatic pressure treatment. Int J Food Microbiol 80:261–264PubMedCrossRefGoogle Scholar
  78. Oxen P, Knorr D (1993) Baroprotective effects of high solute concentrations against inactivation of Rhodotorula rubra. Lebensm Wiss Technol 26:220–223Google Scholar
  79. Pagán R, Mackey BM (2000) Relationship between membrane damage and cell death in pressure-treated Escherichia coli cells: differences between exponential- and stationary-phase cells and variation among strains. Appl Environ Microbiol 66:2829–2834PubMedCrossRefGoogle Scholar
  80. Palou E, López-Malo A, Barbosa-Cánovas GV, Welti-Chanes J, Swanson BG (1997) Effect of water activity on high hydrostatic pressure inhibition of Zygosaccharomyces baillii. Lett Appl Microbiol 24:417–420Google Scholar
  81. Patterson MF, Quinn M, Simpson R, Gilmour A (1995) Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J Food Prot 58(5):525–529Google Scholar
  82. Patterson MF (2005) Microbiology of pressure-treated foods. J Appl Microbiol 98:1400–1409PubMedCrossRefGoogle Scholar
  83. Rasouly A, Ron EZ (2009) Interplay between the heat shock response and translation in Escherichia coli. Res Microbiol 160:288–296PubMedCrossRefGoogle Scholar
  84. Rastogi NK, Raghavarao KS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47:69–112PubMedCrossRefGoogle Scholar
  85. Reyns KMFA, Veraverbeke EA, Michiels CW (2003) Activation and inactivation of Talaromyces macrosporus by high hydrostatic pressure. J Food Prot 66(6):1035–1042PubMedGoogle Scholar
  86. Ritz M, Freulet M, Orange N, Federighi M (2000) Effects of high hydrostatic pressure on membrane proteins of Salmonella typhimurium. Int J Food Microbiol 55:115–119PubMedCrossRefGoogle Scholar
  87. Robey M, Benito A, Hutson RH, Pascual C, Park SF, Mackey BM (2001) Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Appl Environ Microbiol 67:4901–4907PubMedCrossRefGoogle Scholar
  88. San Martín MF, Barbosa-Cánovas GV, Swanson BG (2002) Food processing by high hydrostatic pressure. Crit Rev Food Sci Nutr 42:627–645PubMedCrossRefGoogle Scholar
  89. Sato T, Nakamura Y, Nakashima K, Kato C, Horikoshi K (1996) High pressure represses expression of the malB operon in Escherichia coli. FEMS Microbiol Lett 135:111–116PubMedCrossRefGoogle Scholar
  90. Schwarz JR, Landau JV (1972) Hydrostatic pressure effects on Escherichia coli: site of inhibition of protein synthesis. J Bacteriol 109:945–948PubMedGoogle Scholar
  91. Simonato F, Campanaro S, Lauro FM, Vezzi A, D'Angelo M, Vitulo N, Valle G, Bartlett DH (2006) Piezophilic adaptation: a genomic point of view. J Biotechnol 126:11–25PubMedCrossRefGoogle Scholar
  92. Simpson RK, Gilmour A (1997) The resistance of Listeria monocytogenes to high hydrostatic pressures in foods. Food Microbiol 14:567–573CrossRefGoogle Scholar
  93. Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648PubMedCrossRefGoogle Scholar
  94. Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158CrossRefGoogle Scholar
  95. Smiddy M, Sleator RD, Patterson MF, Hill C, Kelly A (2004) Role for compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Appl Environ Microbiol 70:7555–7557PubMedCrossRefGoogle Scholar
  96. Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. Bioessays 20:49–57PubMedCrossRefGoogle Scholar
  97. Tholozan JL, Ritz M, Jugiau F, Federighi M, Tissier JP (2000) Physiological effects of high hydrostatic pressure treatments on Listeria monocytogenes and Salmonella typhimurium. J Appl Microbiol 88:202–212PubMedCrossRefGoogle Scholar
  98. Van Melderen L, Aertsen A (2009) Regulation and quality control by Lon-dependent proteolysis. Res Microbiol 160:645–651PubMedCrossRefGoogle Scholar
  99. Van Opstal I, Vanmuysen SC, Michiels CW (2003) High sucrose concentration protects Escherichia coli against high pressure inactivation but not against high pressure sensitization to the lactoperoxidase system. Int J Food Microbiol 88:1–9PubMedCrossRefGoogle Scholar
  100. Van Opstal I, Vanmuysen SC, Wuytack EY, Masschalck B, Michiels CW (2005) Inactivation of Escherichia coli by high hydrostatic pressure at different temperatures in buffer and carrot juice. Int J Food Microbiol 98:179–191PubMedCrossRefGoogle Scholar
  101. VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87:5589–5593PubMedCrossRefGoogle Scholar
  102. Welch T, Farewell A, Neidhardt FC, Bartlett DH (1993) Stress response of Escherichia coli to elevated hydrostatic pressure. J Bacteriol 175:7170–7177PubMedGoogle Scholar
  103. Wemekamp-Kamphuis HH, Karatzas AK, Wouters JA, Abee T (2002) Enhanced levels of cold shock proteins in Listeria monocytogenes LO28 upon exposure to low temperature and high hydrostatic pressure. Appl Environ Microbiol 68:456–463PubMedCrossRefGoogle Scholar
  104. Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PP, Hain T, Chakraborty T, Abee T (2004) Identification of sigma factor sigma B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol 70:3457–3466PubMedCrossRefGoogle Scholar
  105. Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64:3–16PubMedCrossRefGoogle Scholar
  106. Yayanos AA, Pollard EC (1969) A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys J 9:1464–1482PubMedCrossRefGoogle Scholar
  107. Yayanos AA (1995) Microbiology to 10500 meters in the deep sea. Annu Rev Microbiol 49:777–805PubMedCrossRefGoogle Scholar
  108. Zhang G, Dong H, Xu Z, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from Chinese continental scientific drilling project in China. Appl Environ Microbiol 71(6):3213–3227PubMedCrossRefGoogle Scholar
  109. Zobell CE, Cobet AB (1962) Growth, reproduction, and death rates of Escherichia coli at increased hydrostatic pressures. J Bacteriol 84:1228–1236PubMedGoogle Scholar
  110. Zobell CE, Cobet AB (1964) Filament formation by Escherichia coli at increased pressures. J Bacteriol 87:710–719PubMedGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Dietrich Vanlint
    • 1
  • Chris W. Michiels
    • 1
  • Abram Aertsen
    • 1
  1. 1.Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M²S)Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations