Advertisement

Distribution and Diversity of Soda Lake Alkaliphiles

  • William D. Grant
  • Dimitry Yu. Sorokin

Genesis of Soda Lakes

Soda lakes and soda deserts are the most stable naturally occurring alkaline environments on earth, where pH values of 10 and above are common. As the name implies, these environments are characterized by large amounts of soda (sodium carbonate, or complexes of this salt), formed by evaporative concentration (Grant 1992; Jones and Grant 2000). Other salts, especially sodium chloride may also concentrate leading to the formation of alkaline saline lakes. Although soda lakes have a worldwide distribution ( Table 2.2.1), they are mainly confined to subtropical latitudes in continental interiors or rain-shadow zones.
Table 2.2.1

Worldwide distribution of soda lakes and soda deserts

North America

Canada

Lake Manito

United States

Alkali Valley, Albert Lake, Lake Lenore, Soap Lake, Big Soda Lake, Owens Lake, Mono Lake, Searles Lake, Deep Springs, Rhodes, Marsh, Harney Lake, Summer Lake, Surprise Valley, Pyramid Lake, Walker Lake

Central America

Mexico

Lake Texcoco

South...

Keywords

Rift Valley Soda Lake Hypersaline Environment Mono Lake Hypersaline Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alazard D, Badillo C, Fardeau ML, Cayol JL, Thomas P, Roldan T, Tholozan JL, Ollivier B (2007) Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico. Extremophiles 11:33–39PubMedGoogle Scholar
  2. Asao M, Jung DO, Achenbach LA, Madigan MT (2006) Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 10:403–410PubMedGoogle Scholar
  3. Banciu H, Sorokin DYu, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004) Thialkavibrio halophilus sp. nov., a novel obligately chemolithoautotrophic facultatively alkaliphilic and extremely salt-tolerant sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334PubMedGoogle Scholar
  4. Banciu HL, Sorokin DYu, Tourova TP, Galinski EA, Muntyan MS, Kuenen JG, Muyzer G (2008) Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sulfur-oxidizing gamma-proteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from south-western Siberian soda lakes. Extremophiles 12:391–404PubMedGoogle Scholar
  5. Boldareva EN, Bryantseva IA, Tsapin A, Nelson K, Sorokin DY, Tourova TP, Boichenko VA, Stadnichuk IN, Gorlenko VM (2007) The new alkaliphilic bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp nov from the hypersaline soda Mono Lake (California, United States). Microbiology 76:82–92Google Scholar
  6. Boldareva EN, Akimov VN, Boychenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM (2008) Rhodobaca barguzinensis sp nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Microbiology 77:206–218Google Scholar
  7. Boldareva EN, Moskalenko AA, Makhneva ZK, Tourova TP, Kolganova VM, Gorlenko TV (2009) Rubribacterium polymorphum gen. nov., sp nov., a novel alkaliphilic nonsulfur purple bacterium from an Eastern Siberian soda lake. Microbiology 78:732–740Google Scholar
  8. Boltianskaia IV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP, Osipov GA, Zhilina TN (2007) Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of reducing N2O, isolated from soda lakes. Mikrobiologiia 76:834–843PubMedGoogle Scholar
  9. Borsodi AK, Marialigetiet K, Szabo G, Palatinszky M, Pollak B, Keki Z, Kovacs AL, Schumann P, Toth EM (2008) Bacillus aurantiacus sp. nov., an alkaliphilic and moderately halophilic bacterium isolated from Hungarian soda lakes. Int J Syst Evol Microbiol 58:845–851PubMedGoogle Scholar
  10. Burns D, Janssen P, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith M (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedGoogle Scholar
  11. Cao S-J, Qu J-H, Yang JS, Sun Q, Yuan HL (2008) Halolactibacillus alkaliphilus sp. nov., a moderately alkaliphilic and halophilic bacterium isolated from a soda lake in Inner Mongolia, China, and emended description of the genus Halolactibacillus. Int J Syst Evol Microbiol 58:2169–2173PubMedGoogle Scholar
  12. Carrasco J, Márquez MC, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2006) Gracilibacillus orientalis sp. nov., a novel moderately halophilic bacterium isolated from a salt lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:599–604PubMedGoogle Scholar
  13. Carrasco J, Márquez MC, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Salsuginibacillus kocurii gen. nov., sp. nov., a moderately halophilic bacterium from sediment of a soda lake. Int J Syst Evol Microbiol 57:2381–2386PubMedGoogle Scholar
  14. Carrasco J, Márquez MC, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2008a) Aquisalibacillus elongatus gen. nov., sp nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 58:1922–1926PubMedGoogle Scholar
  15. Carrasco IJ, Marquez MC, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2008b) Sediminibacillus halophilus gen. nov., sp. nov., a moderately halophilic, Gram-positive bacterium from a hypersaline lake. Int J Syst Evol Microbiol 58:1961–1967PubMedGoogle Scholar
  16. Castillo A, Gutiérrez M, Kamekura M, Xue Y, Ma Y, Cowan D, Jones B, Grant W, Ventosa A (2006) Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56:1519–1524PubMedGoogle Scholar
  17. Castillo A, Gutiérrez M, Kamekura M, Xue Y, Ma Y, Cowan D, Jones B, Grant W, Ventosa A (2007) Halovivax ruber sp. nov., an extremely halophilic archaeon isolated from Lake Xilinhot, Inner Mongolia, China. Int J Syst Evol Microbiol 57:1024–1027PubMedGoogle Scholar
  18. Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archaeal diversity at the Great Salt Plains of Oklahoma described by cultivation and molecular analysis. Microb Ecol 58:519–528PubMedGoogle Scholar
  19. Cloern JE, Cole BE, Oremland RS (1983) Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol Oceanogr 28:1049–1061Google Scholar
  20. Delgado O, Quillaguaman J, Bakhtiar S, Mattiasson B, Gessesse A, Hatti-Kaul R (2006) Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol 56:1229–1232PubMedGoogle Scholar
  21. Duckworth AW, Grant WD, Jones BE, van Steenburgen R (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 9:181–191Google Scholar
  22. Duckworth AW, Grant WD, Jones BE, Meijer D, Marquez MC, Ventosa A (2000) Halomonas magadii sp. nov. a new member of the genus Halomonas isolated from a soda lake of the East African Rift Valley. Extremophiles 4:53–60PubMedGoogle Scholar
  23. Duckworth AW, Grant S, Grant WD, Jones BE, Meijer D (2004) Dietzia natronolimnaea sp. nov. a new member of the genus Dietzia isolated from an East African soda lake. Extremophiles 2:359–366Google Scholar
  24. Elazari-Volcani B (1957) Genus XII. Halobacterium. In: Breed RS, Murray EGD, Smith NR (eds) Bergey’s manual of determinative bacteriology, 7th edn. Williams and Wilkins, Baltimore, pp 207–212Google Scholar
  25. Elevi Bardavid R, Khristo P, Oren A (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystalliser ponds. Extremophiles 12:5–14PubMedGoogle Scholar
  26. Elevi-Bardavid R, Mana L, Oren O (2007) Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57:780–783Google Scholar
  27. Eugster HP (1970) Chemistry and origins of the brines of Lake Magadi, Kenya. Mineral Soc Am Special Publication 3:213–235Google Scholar
  28. Eugster HP, Hardie LA (1978) Saline Lakes. In: Lehrmann A (ed) Lakes, chemistry, geology and physics. Springer, New York, pp 237–293Google Scholar
  29. Fan HP, Xue YF, Ma YH, Ventosa A, Grant WD (2004) Halorubrum tibetense sp nov., a novel haloalkaliphilic archaeon from Lake Zabuye in Tibet, China. Int J Syst Evol Microbiol 57:1137–1142Google Scholar
  30. Falb M, Pfeiffer F, Palm P, Rodewald K, Hickmann V, Titto J, Oesterhelt D (2005) Living with two extremes: conclusions from the genome sequence of Natronomonas phaoronis. Genome Res 15:1336–1343PubMedGoogle Scholar
  31. Feng J, Zhou P, Liu S-J, Warren Rhodes K (2005) Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55:149–152PubMedGoogle Scholar
  32. Foti M, Ma S, Sorokin DYu, Rademaker JLW, Muyzer KJG (2006) Genetic diversity and biogeography of haloalkaliphilic sulfur-oxidizing bacteria belonging the genus Thioalkalivibrio. FEMS Microbiol Ecol 56:95–101PubMedGoogle Scholar
  33. Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:3443–3448PubMedGoogle Scholar
  34. Grant WD (1992) Alkaline environments. In: Lederberg J (ed) Encyclopaedia of microbiology, 1st edn. Academic, London, pp 73–80Google Scholar
  35. Grant WD (2004) Life at low water activity. Philos T Roy Soc Lond B 359:1249–1267Google Scholar
  36. Grant WD, Larsen H (1989) Order Halobacteriales. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of determinative bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 2216–2234Google Scholar
  37. Grant WD, Tindall BJ (1980) Isolation of alkalophilic bacteria. In: Gould GW, Corry JEL (eds) Microbial Growth in Extreme Environments. Academic Press, London, pp 27–36Google Scholar
  38. Grant WD, Tindall BJ (1986) Isolation of alkaliphiles. In: Herbert RA, Codd GA (eds) Extremophiles: microbial life under extreme conditions. Academic, London, pp 22–54Google Scholar
  39. Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270Google Scholar
  40. Grant WD, Gemmell RT, McGenity TJ (1998) Halophiles. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 93–132Google Scholar
  41. Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phytotypes from an East African alkaline saltern. Extremophiles 3:139–145PubMedGoogle Scholar
  42. Grant WD, Jones BE (2000) Alkaline environments. In: Lederberg J (ed) Encyclopaedia of Microbiology, Vol 1, 2nd edn. Academic Press, New York, pp 126–133Google Scholar
  43. Grant WD, Kamekura M, Ventosa A, McGenity TJ (2001) Order Halobacteriales. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 294–300Google Scholar
  44. Gutiérrez M, Castillo A, Kamekura M, Xue Y, Ma Y, Cowan D, Jones B, Grant W, Ventosa A (2007) Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1402–1407PubMedGoogle Scholar
  45. Hardie LA, Eugster HP (1970) The evolution of closed basin brines. Mineral Soc Am Special Publication 3:273–290Google Scholar
  46. Hezayen F, Tindall B, Steinbüchel A, Rehm B (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280PubMedGoogle Scholar
  47. Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512PubMedGoogle Scholar
  48. Hu LF, Pan HL, Xue YF, Ventosa A, Cowan DA, Jones BE, Grant WD, Ma YA (2008) Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 58:1705–1708PubMedGoogle Scholar
  49. Imhoff J, Sahl H, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology 1:219–234Google Scholar
  50. Isachenko BL (1951) Selected works, vol 2. Academy of Sciences of the Union of Soviet Socialist Republics, Moscow, pp 143–162Google Scholar
  51. Itoh T, Yamaguchi T, Zhou P, Takashina T (2005) Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles 9:111–116PubMedGoogle Scholar
  52. Janssen AJH, Lens P, Stams AJM, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, van Zessen E, Luimes P, Buisman CJN (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343PubMedGoogle Scholar
  53. Jones BE, Grant WD (2000) Microbial diversity and ecology of alkaline environments. In: Seckbach J (ed) Journeys to diverse microbial worlds. Kluwer Academic, The Netherlands, pp 177–190Google Scholar
  54. Jones BE, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest FG, Ramos-Cormenzana A, Tindall BJ (eds) Bacterial diversity and systematics. Plenum, New York, pp 195–230Google Scholar
  55. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedGoogle Scholar
  56. Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714PubMedGoogle Scholar
  57. Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar Lake, India. Microb Ecol 55:163–172PubMedGoogle Scholar
  58. Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188Google Scholar
  59. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B, Sorokin DYu, Fuse H, Lidstrom M, Trotsenko YuA (2008) Reclassification and emended description of halo(alkali)philic and halo(alkali)tolerant methanotrophs of genera Methylomicrobium and Methylobacter. Int J Syst Evol Microbiol 58:591–596PubMedGoogle Scholar
  60. Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J Gen Appl Microbiol 41:333–350Google Scholar
  61. Kamekura M, Dyall-Smith M, Upasani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov. and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857PubMedGoogle Scholar
  62. Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus, sp. nov., A haloalkaliphilic archaeon. Int J Syst Bacteriol 45:762–766Google Scholar
  63. Kevbrin V, Lysenko AM, Zhilina TN (1997) Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilineae isolated from Lake Magadi. Microbiology 66:261–266Google Scholar
  64. Kocur M, Hodgkiss W (1973) Taxonomic status of the genus Halococcus Schoop. Int J Syst Bacteriol 23:151–156Google Scholar
  65. Kompantseva EI, Sorokin DY, Gorlenko VM, Namsaraev BB (2005) The phototrophic community found in Lake Khilganta (an alkaline saline lake located in the southeastern Transbaikal Region). Microbiology 74:352–361Google Scholar
  66. Kristen N, Savage L, Krumholz R, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24Google Scholar
  67. Li J-L, Radajewski S, Eshinimaev BT, Trotsenko YuA, McDonald IR, Murell JC (2004) Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ Microbiol 6:1049–1060Google Scholar
  68. Li WJ, Zhang YG, Zhang YQ, Tang SK, Xu P, Xu LH, Jiang CL (2005) Streptomyces sodiiphilus sp nov., a novel alkaliphilic actinomycete. Int J Syst Evol Microbiol 55:1329–1333PubMedGoogle Scholar
  69. Lopéz-Cortés A, Ochoa, JL (1998) The biological significance of halobacteria on nucleation and sodium chloride crystal growth. In: Dubrowski A (ed) Adsorption and its applications in industry and environmental protection. Studies in Surface Science and Catalysis,vol 120, Elsevier, Amsterdam, pp 903–923Google Scholar
  70. Lopez-Garcia P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274PubMedGoogle Scholar
  71. Ma Y, Xue Y, Grant WD, Collins NC, Duckworth AW, van Steenbergen RS, Jones BE (2004a) Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8:193–200PubMedGoogle Scholar
  72. Ma Y, Zhang W, Xue YP, Zhou P, Ventosa A, Grant WD (2004b) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:45–51PubMedGoogle Scholar
  73. Márquez MC, Carrasco IJ, Xue Y, Ma Y, Cowan DA, Jones BE, Grant WD, Ventosa A (2007) Aquisalimonas asiatica gen. nov., sp. nov., a moderately halophilic bacterium isolated from an alkaline, saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 57:1137–1142PubMedGoogle Scholar
  74. McGenity TJ, Grant WD (1995) Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34041 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18:237–243Google Scholar
  75. McGenity TJ, Gemmell RT, Grant WD (1998) Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 48:1187–1196PubMedGoogle Scholar
  76. Melack JM, Kilham P (1974) photosynthetic rate of phytoplankton in East African alkaline saline lakes. Limnol Oceanogr 35:743–755Google Scholar
  77. Mesbah NM, Abou-El-Ela SH, Wiegel J (2006) Novel and unexpected prokaryote diversity in water and sediments of the alkaline hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617Google Scholar
  78. Mesbah NM, Hedrich DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius themophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi an Natrun, Egypt, and proposal of Natranaerobiaceae fam. Nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedGoogle Scholar
  79. Mianping Z, Jiayou T, Junying L, Fasheng Z (1993) Chinese saline lakes. Hydrobiologia 267:23–36Google Scholar
  80. Mikhodiuk OS, Gerasimenko LM, Akimov VN, Ivanovsky RN, Zavarzin GA (2008) Ecophysiology and polymorphism of the unicellular extremely natronophilic cyanobacterium Euhalothece sp. Z-M001 from Lake Magadi. Mikrobiologiia 77:805–813PubMedGoogle Scholar
  81. Montalvo-Rodríguez R, Vreeland R, Oren A, Kessel M, Betancourt C, López-Garriga J (1998) Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312PubMedGoogle Scholar
  82. Morth S, Tindall BJ (1985) Variation of polar lipid composition within haloalkaliphilic archaebacteria. Syst Appl Microbiol 6:247–250Google Scholar
  83. Mwatha WE, Grant WD (1993) Natronobacterium vacuolata sp.nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bact 43:401–404Google Scholar
  84. Mwichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E (2010) Archaeal diversity in the haloalkaline Lake Elmenteita in Kenya. Curr Microbiol 60:47–52Google Scholar
  85. Namsaraev BB, Zhilina TN, Kulyrova AV, Gorlenko VM (1999a) Bacterial methanogenesis in soda lakes of the southeastern Transbaikal region. Microbiology 68:586–591Google Scholar
  86. Namsaraev BB, Zhilina TN, Kulyrova AV, Gorlenko VM (1999b) Bacterial methanogenesis in soda lakes of the southeastern Transbaikal region. Microbiology 68:671–676Google Scholar
  87. Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373Google Scholar
  88. Ochsenreiter T, Pfeifer F, Scleper C (2002) Diversity of archaea in hypersaline environments characterised by molecular–phylogenetic and cultivation studies. Extremophiles 6:267–274PubMedGoogle Scholar
  89. Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68:4795–4802PubMedGoogle Scholar
  90. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  91. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754PubMedGoogle Scholar
  92. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238Google Scholar
  93. Oren A, Elevi-Bardavid R, Watanabe S, Ihara K, Corcelli A (2002) Halomicrobium mukohataei gen. nov., comb. nov., and emended description of Halomicrobium mukohataei. Int J Sys. Evol. Microbiology 52:1831–1835Google Scholar
  94. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BA, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia and one salt lake in Argentina. Appl Environ Microbiol 75:5750–5760PubMedGoogle Scholar
  95. Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA, Rainey FA (1998) Desulfonatronum lacustre gen. nov., sp. nov. A new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology 67:105–113Google Scholar
  96. Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71PubMedGoogle Scholar
  97. Savage KN, Krumholz LR, Oren A, Elshahad M (2007) Haladaptatus paucihalophilus gen. nov., sp.nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24Google Scholar
  98. Savage K, Krumholz L, Oren A, Elshahed M (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860PubMedGoogle Scholar
  99. Scheiwnfurth G, Lewin L (1898) Beiträge zűr Topographie und Geochemie des ägyptischen Natron-Thals. Zeitschr d Ges F Erdk 33:1–25Google Scholar
  100. Shimane Y, Hatada Y, Minegishi H, Mizuki T, Echigo A, Miyuzaki M, Ohta Y, Usami R, Grant WD, Horikoshi K (2010) Natronoarchaeum mannanilyticus gen. nov., sp. nov., an aerobic, extremely halophilic member of the archaea isolated from saltern crystallizers in Nigata, Japan. Int J Syst Evol Microbiol in pressGoogle Scholar
  101. Soliman GSH, Trűper HG (1982) Halobacterium phaoronis sp. nov., anew, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig C3:318–329Google Scholar
  102. Sorokin DY (1998) Occurrence of nitrification in extremely alkaline environments. Microbiology (Moscow, English Translation) 67:335–339Google Scholar
  103. Sorokin DYu, Kuenen JG (2000) A novel facultatively autotrophic hydrogen oxidizing bacterium from alkaline environment. Extremophiles 4:237–245PubMedGoogle Scholar
  104. Sorokin DYu, Kuenen JG (2005a) Alkaliphilic chemolithotrophs from sodas lakes. FEMS Microbiol Ecol 52:287–295PubMedGoogle Scholar
  105. Sorokin DYu, Kuenen JG (2005b) Haloalkaliphilic sulphur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702PubMedGoogle Scholar
  106. Sorokin DY, Muyzer G, Brinkhoff T, Kuenen JG, Jetten M (1998) Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species - Nb. alkalicus. Arch Microbiol 170:345–352PubMedGoogle Scholar
  107. Sorokin DY, Jones BE, Kuenen JG (2000) A novel methane-oxidizing bacterium from highly alkaline environment. Extremophiles 4:145–155PubMedGoogle Scholar
  108. Sorokin DYu, Tourova TP, Lysenko AM, Kuenen JG (2001a) Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67:528–538PubMedGoogle Scholar
  109. Sorokin DYu, Tourova TP, Schmid M, Wagner M, Koops H-P, Kuenen JG, Jetten M (2001b) Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Arch Microbiol 176:170–177PubMedGoogle Scholar
  110. Sorokin DYu, Tourova TP, LysenkoAM MLL, Kuenen JG (2002) Thioalkalivibrio thiocyanooxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria from the soda lakes able to grow with thiocyanate. Int J Syst Evol Microbiol 52:657–664PubMedGoogle Scholar
  111. Sorokin DYu, Gorlenko VM, Namsaraev BB, Namsaraev ZB, Lysenko AM, Eshinimaev BT, Khmelenina VN, Trotsenko YA, Kuenen JG (2004) Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522:235–248Google Scholar
  112. Sorokin DYu, Zhilina TN, Spiridonova EM, Tourova TP, Lysenko AM (2006a) Increased metabolic versatility of haloalkaliphilic bacteria belonging to the Alkalispirillum-Alkalilimnicola group from soda lakes. Extremophiles 10:213–220PubMedGoogle Scholar
  113. Sorokin DY, Banciu H, Robertson LA, Kuenen JG (2006b) Haloalkaliphilic sulfur-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria, vol 2, 3rd edn. Springer, New York, pp 969–984Google Scholar
  114. Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008a) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. - a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453PubMedGoogle Scholar
  115. Sorokin DY, Tourova TP, Mussmann M, Muyzer G (2008b) Dethiobacter alkaliphilus gen. nov sp nov., and Desulfurivibrio alkaliphilus gen. nov sp nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439PubMedGoogle Scholar
  116. Sorokin ID, Zadorina EV, Kravchenko IK, Boulygina ES, Tourova TP, Sorokin DY (2008c) Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827PubMedGoogle Scholar
  117. Sorokin DY, Kovaleva OL, Tourova TP, Kuenen JG, Muyzer G (2010) Aerobic carboxydotrophy at extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes. Microbiology 156:819–827PubMedGoogle Scholar
  118. Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116PubMedGoogle Scholar
  119. Sukarasi VP, Wani A, Shouche YS, Ranade DR (2007) Phylogenetic analysis of methanogenic enrichment cultures obtained from Lonar Lake in India: isolation of Methanocalculus sp. and Methanoculleus sp. Microb Ecol 54:697–704Google Scholar
  120. Svetlitshnyi V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lypolytic, anaerobic, alkalitolerant, thermophilic bacterium utilising short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46:1131–1137PubMedGoogle Scholar
  121. Tian X, Xu Y, Zhou P (1997) New species of Natronobacterium. Acta Microbiol Sin 37:1–6 (in Chinese)Google Scholar
  122. Tindall BJ, Mills AA, Grant WD (1980) An alkalophilic red halophilic bacterium with low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260Google Scholar
  123. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57Google Scholar
  124. Torreblanca M, Rodriguez-Valera F, Juez GA, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99Google Scholar
  125. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131PubMedGoogle Scholar
  126. Upasani VN, Desai S (1990) Sambhar salt lake. Chemical composition of the brines and studies on haloalkaliphilic archaebacteria. Arch Microbiol 154:589–593Google Scholar
  127. Valenzuela-Encinas C, Neria-Gonzálus I, Alcántara-Hernández J, Enriquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254PubMedGoogle Scholar
  128. Ventosa A, Gutiérrez M, Kamekura M, Dyall-Smith M (1999) Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 49:131–136PubMedGoogle Scholar
  129. Vreeland R, Straight S, Krammes J, Dougherty K, Rosenzweig W, Kamekura M (2002) Halosimplex carlsbadense gen. nov., sp. nov., a unique halophilic archaeon, with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452PubMedGoogle Scholar
  130. Wainø M, Tindall B, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190PubMedGoogle Scholar
  131. Wang D, Tang Q (1989) Natronobacterium from soda lakes in China. In: Hattori T, Naruyama RY, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies, Tokyo, pp 68–72Google Scholar
  132. Ward BB, Martino DP, Diaz MC, Joye SB (2000) Analysis of ammonia-oxidizing bacteria from a hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl Environ Microbiol 66:2873–2881PubMedGoogle Scholar
  133. Xu Y, Zhou P, Tian X (1999) Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int J Syst Bacteriol 49:261–266PubMedGoogle Scholar
  134. Xu Y, Wang ZX, Zhou PJ, Ma YH, Ventosa A, Grant WD (2001) Natrialba hulunbeirensis sp. nov, and Natrialba chahannoensis sp. nov., novel haloalkaliphilic archaea from soda lakes in Inner Mongolia Autonomous Region, China. Int J Syst Evol Microbiol 51:693–698Google Scholar
  135. Xue Y, Fan H, Ventosa A, Grant W, Jones B, Cowan D, Ma Y (2005) Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55:2501–2505PubMedGoogle Scholar
  136. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68:503–521Google Scholar
  137. Zavarzina DG, Tourova TP, Kolganova TV, Boulygina ES, Zhilina TN (2009) Description of Anaerobacillus alkalilacustre gen. nov., sp nov.-Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology 78:723–731Google Scholar
  138. Zhang W, Xue Y, Ma Y, Grant WD, Ventosa A, Zhou P (2002) Marinospirillum alcaliphilum sp. nov., a new alkaliphilic helical bacterium from Haoji soda lake in Inner Mongolia Autonomous Region of China. Extremophiles 6:33–38PubMedGoogle Scholar
  139. Zhao D-P, Zhang W-Z, Xue Y, Ma Y (2004) Amphibacillus haojiensis sp. nov.–a novel alkaliphilic and slight halophilic bacterium from Haoji Soda Lake in Inner Mongolia Autonomous Region, China. Acta Microbiol Sin 44:720–723Google Scholar
  140. Zhilina TN, Zavarzin GA, Rainey FA, Kevbrin VV, Kostrikana NA, Lysenko AM (1996) Spirochaeta alkalica sp. nov. and Spirochaeta Africana sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and East African Rift. Int J Syst Bacteriol 46:305–312PubMedGoogle Scholar
  141. Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Ga O, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov.sp. nov. an alkaliphilic sulphate-reducing bacterium. Int J Syst Bacteriol 47:144–149PubMedGoogle Scholar
  142. Zhilina TN, Kevbrin VV, Tourova TP, Lysenko AM, Kostrikina NA, Zavarzin GA (2005a) Clostridium alkalicellum sp nov, an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74:557–566Google Scholar
  143. Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA (2005b) Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006PubMedGoogle Scholar
  144. Zhilina TN, Zavarzina DG, Kolganova TV, Lysenko AM, Tourova TP (2009a) Alkaliphilus peptidofermentans sp nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe(III) reduction. Microbiology 78:445–454Google Scholar
  145. Zhilina TN, Zavarzina DG, Osipov GA, Kostrikina NA, Tourova TP (2009b) Natronincola ferrireducens sp nov., and Natronincola peptidovorans sp nov., new anaerobic alkaliphilic peptolytic iron-reducing bacteria isolated from soda lakes. Microbiology 78:455–467Google Scholar
  146. Zvyagintseva IS, Tarasov AL (1987) Extreme halophilic bacteria from saline soils. Mikrobiologiya 56:839–844Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • William D. Grant
    • 1
  • Dimitry Yu. Sorokin
    • 2
    • 3
  1. 1.Department of Infection, Immunity and InflammationWinogradsky Institute of Microbiology, Russian Academy of Sciences, University of LeicesterLeicesterUK
  2. 2.Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscowRussia
  3. 3.Department of BiotechnologyDelft University of TechnologyBC DelftThe Netherlands

Personalised recommendations