Distribution of Piezophiles

  • Chiaki KatoEmail author

Numerous cold deep-sea adapted microorganisms (piezophilic, formerly referred to as “barophilic” bacteria) have been isolated using deep-sea research submersibles and/or several sediment/animal sampling systems. Many of the isolates from cold sea bottom are novel psychrophilic bacteria, and we have identified several new piezophilic species, that is, Photobacterium profundum, Shewanella violacea, Moritella japonica, Moritella yayanosii, Psychromonas kaikoi, and Colwellia piezophila. These piezophiles involve five genera in gamma-Proteobacteria subgroup and produce significant amounts of unsaturated fatty acids in their cell membrane fractions to maintain the membrane fluidity in cold and high-pressure environments. Piezophilic microorganisms have been identified in deep-sea bottoms of many of the world’s oceans. Therefore, these microbes are well distributed on our planet. This chapter focuses on the distribution and taxonomy of the piezophilic microorganisms and their growth habitats.


Japan Trench Psychrophilic Bacterium Psychrotrophic Bacterium Shewanella Species Gene Sequence Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am very grateful to Prof. Koki Horikoshi for continued support of my extremophile studies. I also thank my colleagues, Drs. Maria Smorawinska, Lina Li, Takako Sato, Yuichi Nogi and Kaoru Nakasone, for excellent collaboration. Finally, I appreciate the crews of the research ship and members of the submersible operation division at JAMSTEC for their efforts in collecting samples from the deep-sea environment.


  1. Aono E, Baba T, Ara T, Nishi T, Nakamichi T, Inamoto E, Toyonaga H, Hasegawa M, Takai Y, Okumura Y, Baba M, Tomita M, Kato C, Oshima T, Nakasone K and Mori H (2010) Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments. Mol BioSyst 6:1216–1226PubMedCrossRefGoogle Scholar
  2. Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720PubMedGoogle Scholar
  3. Bartlett DH (1999) Microbial adaptations to the psychrosphere/piezosphere. J Mol Microbiol Biotechnol 1:93–100PubMedGoogle Scholar
  4. Beijerinck MW (1889) Le Photobacterium luminosum, Bactérie luminosum de la Mer Nord. Arch Néerl Sci 23:401–427 (in French)Google Scholar
  5. Bowmam JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA (1997) Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047CrossRefGoogle Scholar
  6. Bowman JP, Gosink JJ, McCammon SA, Lewis TE, Nichols DS, Nichols PD, Skerratt JH, Staley JT, McMeekin TA (1998) Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22:6ω3). Int J Syst Bacteriol 48:1171–1180CrossRefGoogle Scholar
  7. Colwell RR, Morita RY (1964) Reisolation and emendation of description of Vibrio marinus (Russell) Ford. J Bacteriol 88:831–837PubMedGoogle Scholar
  8. DeLong EF, Yayanos AA (1985) Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103PubMedCrossRefGoogle Scholar
  9. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737PubMedGoogle Scholar
  10. DeLong EF, Franks DG, Yayanos AA (1997) Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63:2105–2108PubMedGoogle Scholar
  11. Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE (1984) The nucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920PubMedGoogle Scholar
  12. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT (1988) Isolation of an obligately barophilic bacterium and description of a new genus Colwellia gen. nov. Syst Appl Microbiol 10:152–160CrossRefGoogle Scholar
  13. Fang J, Barcelona MJ, Nogi Y, Kato C (2000) Biochemocal function and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Mariana Trench at 11, 000 meters. Deep-Sea Res 147:1173–1182Google Scholar
  14. Fang J, Chan O, Kato C, Sato T, Peeples T, Niggemeyer K (2003) Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 38:885–887PubMedCrossRefGoogle Scholar
  15. Imai E, Honda H, Hatori K, Brack A, Matsuno K (1999) Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283:831–833PubMedCrossRefGoogle Scholar
  16. Jensen MJ, Tebo BM, Baumann P, Mandel M, Nealson KH (1980) Characterization of Alteromonas hanedai (sp. nov.), a non-fermentative luminous species of marine origin. Curr Microbiol 3:311–315CrossRefGoogle Scholar
  17. Kato C (1999) Barophiles (Piezophiles). In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 91–111CrossRefGoogle Scholar
  18. Kato C, Horikoshi K (1996) Gene expression under high pressure. In: Hayashi R, Balny C (eds) Progress in biotechnology 13, high pressure bioscience and biotechnology. Elsevier Science BV, Amsterdam, pp 59–66CrossRefGoogle Scholar
  19. Kato C, Nogi Y (2001) Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol Ecol 35:223–230PubMedCrossRefGoogle Scholar
  20. Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9CrossRefGoogle Scholar
  21. Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11,000 m deep Mariana Trench. Extremophiles 1:117–123PubMedCrossRefGoogle Scholar
  22. Kato C, Li L, Nakamura Y, Nogi Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513PubMedGoogle Scholar
  23. Kato C, Nakasone K, Qureshi MH, Horikoshi K (2000) How do deep-sea microorganisms respond to changes in environmental pressure? In: Storey KB, Storey JM (eds) Cell and molecular response to stress, vol 1, Environmental Stressors and Gene Responses. Elsevier Science BV, Amsterdam, pp 277–291Google Scholar
  24. Kato C, Sato T, Nogi Y, Nakasone K (2004) Piezophiles: High pressure-adapted marine bacteria. Mar Biotechnol 6:S195–S201Google Scholar
  25. Kyo M, Miyazaki E, Tsukioka S, Ochi H, Amitani Y, Tsuchiya T, Aoki T, Takagawa S (1995) The sea trial of “KAIKO”, the full ocean depth research ROV. OCEANS’95 3:1991–1996Google Scholar
  26. Leonardo MR, Moser DP, Barbieri E, Brantner CA, MacGregor BJ, Paster BJ, Stackebrandt E, Nealson KH (1999) Shewanella pealeana sp. nov., a member of the microbial community associated with the accessory nidamental gland of the squid Loligo pealei. Int J Syst Bacteriol 49:1341–1351PubMedCrossRefGoogle Scholar
  27. MacDonell MT, Colwell RR (1985) Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 6:171–182CrossRefGoogle Scholar
  28. Makemson JC, Fulayfil NR, Landry W, Van Ert LM, Wimpee CF, Widder EA, Case JF (1997) Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039PubMedCrossRefGoogle Scholar
  29. Margesin R, Nogi Y (2004) Psychropiezophilic microorganisms. Cell Mol Biol 50:429–436PubMedGoogle Scholar
  30. Maruyama A, Honda D, Yamamoto H, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846PubMedCrossRefGoogle Scholar
  31. Morita RY (1976) The survival of vegetative microbes. In: Gray TRG, Postgate JR (eds) Cambridge University Press, Cambridge pp 279–298Google Scholar
  32. Mountfort DO, Rainey FA, Burghardt J, Kasper F, Stackebrant E (1998) Psychromonas antarcticus gen. nov., sp. nov., A new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, Antarctica. Arch Microbiol 169:231–238PubMedCrossRefGoogle Scholar
  33. Nakasone K, Ikegami A, Kato C, Usami R, Horikoshi K (1998) Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149–154PubMedCrossRefGoogle Scholar
  34. Nakasone K, Ikegami A, Kawano H, Usami R, Kato C, Horikoshi K (2002) Transcriptional regulation under pressure conditions by the RNA polymerase σ54 factor with a two component regulatory system in Shewanella violacea. Extremophiles 6:89–95PubMedCrossRefGoogle Scholar
  35. Nogi Y, Kato C (1999) Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench, and Moritella yayanosii sp. nov., a new barophilic bacterial species. Extremophiles 3:71–77PubMedCrossRefGoogle Scholar
  36. Nogi Y, Kato C, Horikoshi K (1998a) Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44:289–295PubMedCrossRefGoogle Scholar
  37. Nogi Y, Kato C, Horikoshi K (1998b) Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch Microbiol 170:331–338PubMedCrossRefGoogle Scholar
  38. Nogi Y, Masui N, Kato C (1998c) Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7PubMedCrossRefGoogle Scholar
  39. Nogi Y, Kato C, Horikoshi K (2002) Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol 52:1527–1532PubMedCrossRefGoogle Scholar
  40. Nogi Y, Hosoya S, Kato C, Horikoshi K (2004) Colwellia piezophila sp. nov., isolation of novel piezophilic bacteria from the deep-sea fissure sediments of the Japan Trench. Int J Syst Evol Microbiol 54:1627–1631PubMedCrossRefGoogle Scholar
  41. Owen R, Legros RM, Lapage SP (1978) Base composition, size and sequence similarities of genome deoxyribonucleic acids from clinical isolates of Pseudomonas putrefaciens. J Gen Microbiol 104:127–138PubMedGoogle Scholar
  42. Piccard J, Dietz RS (1961) Seven miles down. G.P. Putnum and Sons, New YorkGoogle Scholar
  43. Pope DH, Smith WP, Swartz RW, Landau JV (1975) Role of bacterial ribosomes in barotolerance. J Bacteriol 121:664–669PubMedGoogle Scholar
  44. Schmitz WJ Jr (1995) On the interbasin-scale thermohaline circulation. Rev Geophys 33:151–173CrossRefGoogle Scholar
  45. Schwarz JR, Colwell RR (1975) Abstracts, 75th Annual meeting of the American Society for Microbiology. American Society for Microbiology, Washington DC, p.162Google Scholar
  46. Seo HJ, Bae SS, Lee JH, Kim SJ (2005) Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 55:1661–1666PubMedCrossRefGoogle Scholar
  47. Stetter KO (1993) Life at the upper temperature border. In: Van Tran Than J, Van Tran Than K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Frontières, Gif-sur-Yvette, pp 195–219Google Scholar
  48. Urakawa H, Kita-Tsukamoto K, Steven SE, Ohwada K, Colwell RR (1998) A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378PubMedCrossRefGoogle Scholar
  49. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–1461PubMedCrossRefGoogle Scholar
  50. Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003a) Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53:533–538PubMedCrossRefGoogle Scholar
  51. Xu Y, Nogi Y, Kato C, Liang Z, Rüger H-J, Kegel DD, Glansdorff N (2003b) Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int J Syst Evol Microbiol 53:527–532PubMedCrossRefGoogle Scholar
  52. Yayanos AA (1995) Microbiology to 10,500 meters in the deep sea. Annu Rev Microbiol 49:777–805PubMedCrossRefGoogle Scholar
  53. Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810PubMedCrossRefGoogle Scholar
  54. Yayanos AA, Dietz AS, Boxtel RV (1981) Obligately barophilic bacterium from the Mariana Trench. Proc Natl Acad Sci USA 78:5212–5215PubMedCrossRefGoogle Scholar
  55. Zobell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189PubMedGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Institute of BiogeosciencesJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan

Personalised recommendations