Skip to main content

Physiology, Metabolism, and Enzymology of Thermoacidophiles

Reconstruction of the Central Carbon Metabolic Network of Thermoacidophilic Archaea

  • Reference work entry
Extremophiles Handbook

Introduction

Adaptation and specialization to harsh environments represent hallmarks of members of the Archaea and this was originally, besides the presence of unique metabolic pathways (i.e., methanogenesis), regarded as a typical archaeal feature. However, meanwhile a wide distribution of mostly uncultured members in ordinary habitats such as ocean and lake waters or soil has been proven and Archaea are known to play major roles in the global ecosystems (DeLong 1998; DeLong and Pace 2001; Francis et al. 2005; Leininger et al. 2006).

Some extremophiles survive and thrive at temperatures over 100°C or down to 0°C, in extremely alkaline (around pH 11) acidic waters (pH < 1), extremely saline environments (>30% (w/v) salts), or combinations thereof. Typical environments from which these Archaea have been isolated include rift vents in the deep sea (e.g., black smokers), geysers, hot acidic springs and sulfuric waters, or salt lakes. Life under such extreme conditions requires effective...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed H, Tjaden B, Hensel R, Siebers B (2004) Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? Biochemical Society Trans 32:2–4

    Google Scholar 

  • Ahmed H, Ettema TJ, Tjaden B, Geerling AC, Van der Oost J, Siebers B (2005) The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea – a re-evaluation. Biochem J 390:529–540

    Article  PubMed  CAS  Google Scholar 

  • Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R, Driessen AJM, Schleper C (2006) Production of recombinant and tagged proteins in the hyperthermophilic Archaeon Sulfolobus solfataricus. Appl and Environm Microbiol 72(1):102–111

    Article  CAS  Google Scholar 

  • Albers SV, Driessen AJM (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145–149

    Article  PubMed  CAS  Google Scholar 

  • Albers SV, Birkeland N-K, Driessen AJM, Gertig S, Haferkamp P, Klenk H-P, Kouril T, Manica A, Pham TK, Ruoff P, Schleper C, Schomburg D, Sharkey KJ, Siebers B, Sierocinski P, Steuer R, Van der Oost J, Westerhoff HV, Wieloch P, Wright PC, Zaparty M (2009) SulfoSYS – Sulfolobus Systems Biology: towards a Silicon Cell Model for the central carbohydrate metabolism of the Archaeon Sulfolobus solfataricus under temperature variation. Biochem Soc Trans 37:58–64

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Andreesen JR, Gottschalk G (1969) The occurence of the modified Entner-Doudoroff pathway in Clostridium aceticum. Arch Microbiol 69:160–170

    CAS  Google Scholar 

  • Angelov A, Fuetterer O, Valerius O, Braus GH, Liebl W (2005) Properties of the recombinant glucose⁄galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J 272:1054–1062

    Article  PubMed  CAS  Google Scholar 

  • Angelov A, Liebl W (2006) Insights into extreme thermoacidophily based on genome analysis of Picrophilus torridus and other thermoacidophilic archaea. J Biotechnol 126(1):3–10

    Article  PubMed  CAS  Google Scholar 

  • Arguelles JC (2000) Physiological role of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Article  PubMed  CAS  Google Scholar 

  • Auernik KS, Cooper CR, Kelly RM (2008a) Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Curr Opin Biotechnol 19:445–453

    Article  PubMed  CAS  Google Scholar 

  • Auernik KS, Maezato Y, Blum PH, Kelly RM (2008b) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–92

    Article  PubMed  CAS  Google Scholar 

  • Bartolucci S, Rella R, Guagliardi A, Raia CA, Gambacorta A, De Rosa M, Rossi M (1987) Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. J Biol Chem 262:7725–7731

    PubMed  CAS  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786

    Article  PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68

    Article  PubMed  CAS  Google Scholar 

  • Brouns SJJ, Walther J, Snijders APL, van de Werken HJG, Willemen HLDM, Worm P, de Vos MGJ, Andersson A, Lundgren M, Mazon HFM, van den Heuvel RHH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J (2006) Identification of the missing links in prokaryotic pentose oxidation pathways- evidence for enzyme recruitment. J Biol Chem 281(37):27378–27388

    Article  PubMed  CAS  Google Scholar 

  • Brunner NA, Siebers B, Hensel R (2001) Role of two different glyceraldehydes-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: Regulation on protein and transcript level. Extremophiles 5:101–109

    Article  PubMed  CAS  Google Scholar 

  • Bruegger K, Redder P, She Q, Confalonieri F, Zivanovic Y, Garrett RA (2002) Mobile elements in archaeal genomes. FEMS Microbiol Lett 10;206(2):131–41

    Google Scholar 

  • Bruegger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32(Pt 2):179–83

    Article  Google Scholar 

  • Budgen N, Danson MJ (1986) Metabolism of glucose via a modified ENtner-Doudoroff pathway in the thermoacidophilic archaeabacterium Thermoplasma acidophilum. FEBS Lett 196:207–210

    Article  CAS  Google Scholar 

  • Camacho ML, Brown RA, Bonete MJ, Danson MJ, Hough DW (1995) Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett 134:85–90

    Article  PubMed  CAS  Google Scholar 

  • Cardona S, Remonsellez F, Guiliani N, Jerez CA (2001) The glycogen-bound polyphosphate kinase from Sulfolobus acidocaldarius is actually a glycogen synthase. Appl Environ Microbiol 67:4773–80

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–9

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 20;54(19):7098–104

    Article  CAS  Google Scholar 

  • Ciaramella M, Napoli A, Rossi M (2005) Another extreme genome: how to live at pH 0. Trends Microbiol 13(2):49–51

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 233:701–703

    Article  Google Scholar 

  • Crowe LM, Crowe JH (1992) Stabilization of dry liposomes by carbohydrates. Dev Biol Stand 74:285–294

    PubMed  CAS  Google Scholar 

  • Danson MJ, Black SC, Woodland DL, Wood PA (1985) Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS 179(1):120–124

    Article  CAS  Google Scholar 

  • Danson MJ, Hugh DW (1992) The enzymology of archaebacterial pathways of central metabolism. In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London Chapel Hill, pp 1–21

    Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic acidophilic mycoplasm isolated from a coal refuse pile. Science 170:1416–1418

    Article  PubMed  CAS  Google Scholar 

  • Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15

    Google Scholar 

  • DeLong EF (1998) Everything in moderation: archaea as non-extremophiles. Curr Opin Genet 6:649–54

    Article  Google Scholar 

  • DeLong EF, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478

    Article  PubMed  CAS  Google Scholar 

  • De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V (1984) Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 224:407–414

    PubMed  CAS  Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast I Genetic evidence that trehlose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13(4):735–746

    Article  PubMed  CAS  Google Scholar 

  • Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416

    Article  PubMed  CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of alpha-alpha trehalose. Adv Carbohyd Chem Biochem 30:227–256

    Article  CAS  Google Scholar 

  • Elzainy TA, Hassan MM, Allam AM (1973) New pathway for non-phosphorylated degradation of gluconate by Aspergillus niger. J Bacteriol 114:457–459

    PubMed  CAS  Google Scholar 

  • Ettema TJG, Makarova KS, Jellema GL, Gierman HJ, Koonin EV, Huynen MA, de Vos WM, van der Oost J (2004) Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J Bacteriol 186(22):7754–7762

    Article  PubMed  CAS  Google Scholar 

  • Ettema TJG, Ahmed H, Geerling ACM, Van der Oost J, Siebers B (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12:75–88

    Article  PubMed  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102(41):14683–14688

    Article  PubMed  CAS  Google Scholar 

  • Fröls S, Gordon PM, Panlilio MA, Schleper C, Sensen CW (2007) Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology 365:48–59

    Article  PubMed  CAS  Google Scholar 

  • Fütterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. PNAS 101(24):9091–9096

    Article  PubMed  Google Scholar 

  • Gerlt JA, Babbitt PC (2000) Can sequence determine function? Genome Biol 1:0005.1–0005.10

    Article  Google Scholar 

  • Giæver HM, Styrvold OB, Kaasen I, Strom AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–49

    PubMed  Google Scholar 

  • Goerisch H, Hartl T, Grossebüter W, Stezowski J (1985) Archaebacterial malate dehydrogenases. The enzymes from the thermoacidophilic organisms Sulfolobus acidocaldarius and Thermoplasma acidophilum show A-side stereospecificity for NAD+. Biochem J 226(3):885–888

    CAS  Google Scholar 

  • Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719

    PubMed  CAS  Google Scholar 

  • Gueguen Y, Rolland JL, Schroeck S, Flament D, Defretin S, Saniez MH, Dietrich J (2001) Characterization of the maltooligsyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldricus. FEMS Microbiol Lett 194:201–206

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Wendorff D, Schönheit P (2003) Bifunctional phosphoglucose/ phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily. J Biol Chem 279:2262–2272

    Article  PubMed  CAS  Google Scholar 

  • Heath C, Posner MG, Aass HC, Upadhyay A, Scott DJ, Hough DW, Danson MJ (2007) The 2-oxoacid dehydrogenase multi-enzyme complex of the archaeon Thermoplasma acidophilum – recombinant expression, assembly and characterization. FEBS J 274(20):5406–5415

    Article  PubMed  CAS  Google Scholar 

  • Helfert C, Gotsche S, Dahl M (1995) Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-α (1-)-glucosidase encoded by the treA gene. Mol Microbiol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364

    Article  PubMed  CAS  Google Scholar 

  • Hottiger T, Schmutz P, Wiemken A (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522

    PubMed  CAS  Google Scholar 

  • Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metalmobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47

    Article  Google Scholar 

  • Huegler M, Huber H, Stetter KO, Fuchs G (2003a) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173

    CAS  Google Scholar 

  • Huegler M, Krieger RS, Jahn M, Fuchs G (2003b) Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. Eur J Biochem 270:736–744

    Article  CAS  Google Scholar 

  • Huegler M, Fuchs G (2005) Assaying for the 3-hydroxypropionate cycle of carbon fixation. Methods Enzymol 397:212–221

    Article  CAS  Google Scholar 

  • Itoh T, Suzuki K, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–63

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Yoshikawa N, Takashina T (2007) Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Sys Evolution Microbiol 57:2557–2561

    Article  CAS  Google Scholar 

  • Janssen S, Schafer G, Anemuller S, Moll R (1997) A succinate dehydrogenase with novel structure and properties from the hyperthermophilic archaeon Sulfolobus acidocaldarius: genetic and biophysical characterization. J Bacteriol 179(17):5560–5569

    PubMed  CAS  Google Scholar 

  • JGI (2007) DOE Joint Genome Institute available at www.jgi.doe.gov/

  • Jones CE, Fleming TM, Cowan DA, Littlechild JA, Piper PW (1995) The phosphoglycerate kinase and glyceraldehyde-3-phosphtae dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus overlap by 8-bp. Eur J Biochem 233:800–808

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Lee SB (2005) Identification and characterization of Thermoplasma acidophilum 2-keto-3-deoxy-D-gluconate kinase: A new class of sugar kinases. Biotechnol Bioprocess Eng 10:535–539

    Article  CAS  Google Scholar 

  • Jung JH, Lee SB (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 397:131–138

    Article  PubMed  CAS  Google Scholar 

  • Kaasen I, Mc Dougall J, Strom AR (1994) Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15

    Article  PubMed  CAS  Google Scholar 

  • Kardinahl S, Schmidt CL, Hansen T, Anemueller S, Petersen A, Schaefer G (1999) The strict molybdate-dependence of glucose-degradation by the thermoacidophilic Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme – an aldehyde oxidoreductase. Eur J Biochem 260:540–548

    Article  PubMed  CAS  Google Scholar 

  • Karp PD (2004) Call for an enzyme genomics initiative. Genome Biol 5:401.1–401.3

    Article  Google Scholar 

  • Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97(26):14257–62

    Article  PubMed  CAS  Google Scholar 

  • Kawarabayasi Y, Hino Y, Horikawa H, Jin-No K, Takahashi M, Sekine M, Baba S-I, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K-I, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140

    Article  PubMed  CAS  Google Scholar 

  • Kehrer D, Ahmed H, Brinkman H, Siebers B (2007) The glycerate kinase of the hyperthermophilic archaeon T. tenax: New insights into phylogenetic distribution of physiological role of members of the three different families. BMC Genomics 8:301

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee SB (2005) Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. Biochem J 387:271–280

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee SB (2006) Characterization of Sulfolobus solfataricus 2-Keto-3-deoxy-D-gluconate Kinase in the modified Entner-Doudoroff pathway. Biosci Biotechnol Biochem 70(6):1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi KM, Kato Y, Miura M, Kettoku T, Komeda A, Iwamatsu (1996) Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeon in Sulfolobus solfataricus. Biosci Biotechnol Biochem 60(11):1882–5

    Article  PubMed  CAS  Google Scholar 

  • Koenig H, Sorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303

    Article  CAS  Google Scholar 

  • Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190(3):355–69

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson M (2003) Metabolic pathway promiscuity in the Archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate Aldolase. J Biol Chem 278(36):34066–34072

    Article  PubMed  CAS  Google Scholar 

  • Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson M (2005) Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869

    Article  PubMed  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–9

    Article  PubMed  CAS  Google Scholar 

  • Luebben M, Schaefer G (1989) Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and presence of an f0-related N, N′-dicyclohexylcarbodiimide-binding proteolipid. JBacteriol 171(11):6106–6116

    CAS  Google Scholar 

  • Maréchal LR, Belocopitow E (1972) Metabolism of trehalose in Euglena gracilis I. Partial purification and some properties of trehalose phosphorylase. J Biol Chem 247:3223–3228

    PubMed  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63(3):896–902

    PubMed  CAS  Google Scholar 

  • Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182(9):2574–81

    Article  PubMed  CAS  Google Scholar 

  • Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181

    Article  PubMed  CAS  Google Scholar 

  • Matsubara H, Goto K, Matsumura T, Mochida K, Iwaki M, Niwa M, Yamasato K (2002) Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages. J Syst Evol Microbiol 52:1681–1685

    Article  CAS  Google Scholar 

  • Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K-O, Fuchs G (1999) Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098

    PubMed  CAS  Google Scholar 

  • Mizanur RM, Zea CJ, Pohl NL (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126(49):15993–8

    Article  PubMed  CAS  Google Scholar 

  • Mizanur RM, Griffin AK, Pohl NL (2008) Recombinant production and biochemical characterization of a hyperthermostable alpha-glucan/maltodextrin phosphorylase from Pyrococcus furiosus. Archaea 2:169–76

    Article  PubMed  CAS  Google Scholar 

  • Mukund S, Adams MW (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic Archaeon Pyrococcus furiosus. J Biol Chem 270(15):8389–8392

    Article  PubMed  CAS  Google Scholar 

  • Musfeldt M, Selig M, Schoenheit P (1999) Acetyl coenzyme A synthetase (ADP forming) from the hyperthermophilic Archaeon Pyrococcus furiosus: identification, cloning, separate expression of the encoding genes acdAI and acdBI, in Escherichia coli, and in vitro reconstitution of the active heterotetrameric enzyme from its recombinant subunits. J Bacteriol 181(18):5885–5888

    PubMed  CAS  Google Scholar 

  • Nicolaus B, Gambacorta A, Basso AL, Riccio R, De Rosa M, Grant WD (1988) Trehalose in archaebacteria. System Appl Microbiol 10:215–217

    Article  CAS  Google Scholar 

  • Nishimasu H, Fushinobu S, Shoun H, Wakagi T (2006) Identification and characterization of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Bacteriol 188(5):2014–2019

    Article  PubMed  CAS  Google Scholar 

  • Noh M, Jung JH, Lee SB (2006) Purification and characterization of glycerate kinase from the thermoacidophilic Archaeon Thermoplasma acidophilum: An enzyme belonging to the second glycerate kinase family. Biotechnol Bioprocess Eng 11:344–350

    Article  CAS  Google Scholar 

  • Orita I, Yurimoto H, Hirai R et al (2005) The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. J Bacteriol 187(11):3636–42

    Article  PubMed  CAS  Google Scholar 

  • Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T, Sakai Y (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the Archaeon Thermococcus kodakaraensis. J Bacteriol 188(13):4698–4704

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Park J-T, Kang HK, Cha H, Kim DS, Kim JW, Park K-H (2007) TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alpha-glucanotransferase activities. Biosci Biotechnol Biochem 71:1348–1352

    Article  PubMed  CAS  Google Scholar 

  • Potters MB, Solow BT, Bischoff KM, Graham DE, Lower BH, Helm R, Kennelly PJ (2003) Phosphoprotein with phosphoglycerate mutase activity from the Archaeon Sulfolobus solfataricus. J Bacteriol 185(7):2112–2121

    Article  PubMed  CAS  Google Scholar 

  • Puchegger S, Redl B, Stoffler G (1990) Purification and properties of a thermostable fumarate hydratase from the archaeobacterium Sulfolobus solfataricus. J Gen Microbiol 136:1537–1541

    PubMed  CAS  Google Scholar 

  • Qu Q, Lee SJ, Boos W (2004) TreT, a novel trehalose glycosyl-transferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:46

    Google Scholar 

  • Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (2002) A novel candidate for the true fructose-1, 6-bisphosphatase in Archaea. J Biol Chem 277(34):30649–30655

    Article  PubMed  CAS  Google Scholar 

  • Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic Archaeon Thermococcus kodakarensis. J Bacteriol 186:13

    Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  PubMed  CAS  Google Scholar 

  • Ray WK, Keith SM, DeSantis AM, Hunt JP, Larson TJ, Helm RF, Kennelly PJ (2005) A phosphohexomutase from the Archaeon Sulfolobus solfataricus is covalently modified by phosphorylation on serine. J Bacteriol 187(12):4270–4275

    Article  PubMed  CAS  Google Scholar 

  • Redder P, She Q, Garrett RA (2001) Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. J Mol Biol 306(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Schönheit P (2006) Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett 580:1198–1204

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Bott M, Schönheit P (2006) Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol Lett 259:113–119

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Gebhard S, Schoenheit P (2007) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), keyenzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix. FEMS Microbiol Lett 273:196–205

    Article  PubMed  CAS  Google Scholar 

  • Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 106:8605–8610

    Article  PubMed  CAS  Google Scholar 

  • Reher M, Fuhrer T, Bott M, Schoenheit P (2010) The nonphosphorylative entner-doudoroff pathway in the thermoacidophilic euryarchaeon picrophilus torridus involves a novel 2-keto-3-deoxygluconate- specific aldolase. J Bacteriol 192(4): 964–974

    Article  PubMed  CAS  Google Scholar 

  • Rimmele M, Boos W (1994) Trehalose-6-phosphat hydrolase of Escherichia coli. J Bacteriol 176:5654–5664

    PubMed  CAS  Google Scholar 

  • Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–13

    Article  PubMed  CAS  Google Scholar 

  • Russo AD, Rullo R, Masullo M, Ianniciello G, Arcari P, Bocchini V (1995) Glyceraldehyde-3-phosphate dehydrogenase in the hyperthermophilic archaeon Sulfolobus solfataricus: characterization and significance in glucose metabolism. Biochem Mol Biol Int 36:123–135

    PubMed  CAS  Google Scholar 

  • Say RF, Fuchs G (2010) Fructose 1, 6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995a) Life at extremely low pH. Nature 375:741–742

    Article  PubMed  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995b) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059

    PubMed  CAS  Google Scholar 

  • Schleper C, Puhler G, Klenk HP, Zillig W (1996) Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46:814–816

    Article  Google Scholar 

  • Segerer A, Neuner AM, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564

    Article  Google Scholar 

  • Segerer A, Langworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatara fields. Syst Appl Microbiol 10:161–171

    Article  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Leeuwenhoek 81:73–83

    Article  PubMed  CAS  Google Scholar 

  • She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Groth Clausen I, Curtis B-A, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001a) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. PNAS 98(14):7835–7840

    Article  PubMed  CAS  Google Scholar 

  • She Q, Peng X, Zillig W, Garrett RA (2001b) Gene capture in archaeal chromosomes. Nature 409(6819):478

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen C, Zibat A, Klenk HP, Schuster SC, Hensel R (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186:2179–2194

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8:695–705

    Article  PubMed  CAS  Google Scholar 

  • Sisignano M, Morbitzer D, Gägens J, Oldiges M, Soppa J (2009) A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not the other branched chain amino acids. Microbiology epub ahead of print, doi:10.1099/mic.0.033449–0

    Google Scholar 

  • Smith PF, Langworthy TA, Smith MR (1975) Polypeptide nature of growth requirement in Yeast extract for Thermoplasma acidophilum. J Bacteriol 124:884–892

    PubMed  CAS  Google Scholar 

  • Smith LD, Stevenson KJ, Hough DW, Danson MJ (1987) Citrate synthase from the thermophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. FEBS Lett 225(1–2):277–281

    Article  CAS  Google Scholar 

  • Snijders APL, Walther J, Peter S, Kinnman I, de Vos MGJ, van de Werken HJG, Brouns SJJ, van der Oost J, Wright PC (2006) Reconstruction of central carbon metabolism in Sulfolobus solafatricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6(15):1518–1529

    Article  PubMed  CAS  Google Scholar 

  • Soderberg T (2005) Biosythesis of ribose-5-phosphate and erythrose-4-phosphate in Archaea: a phylogenetic analysis of archaeal genomes. Archaea 1:347–352

    Article  PubMed  CAS  Google Scholar 

  • Solow B, Bichoff KM, Zylka MJ, Kennelly PJ (1998) Archaeal phosphoproteins Identification of a hexosephosphate mutase and the a-subunit of succinyl-CoA synthetase in the extreme acidothermophile Sulfolobus solfataricus. Protein Sci 7:105–111

    Article  PubMed  CAS  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:05–210

    Article  Google Scholar 

  • Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44

    Article  PubMed  Google Scholar 

  • Tjaden B, Plagens A, Dörr C, Siebers B, Hensel R (2006) Phosphoenolpyruvate synthetase and pyruvate phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Mol Microbiol 60:287–298

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson GA, Koch TK, Hochstein LI (1974) The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol 20:1085–1091

    Article  CAS  Google Scholar 

  • Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus. Biochem Biophys Acta 1334:28–32

    Article  PubMed  CAS  Google Scholar 

  • Uhrigshardt H, Walden M, John H, Anemüller S (2001) Purification and characterization of the first archaeal aconitase from the thermoacidophilic Sulfolobus acidocaldarius. Eur J Biochem 268:1760–1771

    Article  PubMed  CAS  Google Scholar 

  • Uhrigshardt H, Walden M, John H, Petersen A, Anemüller S (2002) Evidence for an operative glyoxylate cycle in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Lett 513(2):223–229

    Article  PubMed  CAS  Google Scholar 

  • Van de Vossenberg JLCM, Driessen AJM, Zillig W, Konings WN (1998) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74

    Article  PubMed  Google Scholar 

  • Van der Oost J, Siebers B (2007) The glycolytic pathways of Archaea: evolution by tinkering. In: Garrett RA, Klenk H-P (eds) Archaea: evolution, physiology and molecular biology, vol 22, 1st edn. MA, Blackwell, Malden, pp 247–260

    Google Scholar 

  • Verhees CH, Kengen SW, Tuininga JE, Schut GJ, Adams MWW, De Vos WM, Van der Oost J (2003) The unique features of glycolytic pathways in Archaea. Biochem J 375:231–246, Erratum in: Biochem. J. (2004) 377:819-822

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Berkner S, Ajon M, Driessen AJM, Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Biochem Soc Trans 37:97–101

    Article  CAS  Google Scholar 

  • Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–8

    Article  PubMed  CAS  Google Scholar 

  • Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequences analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269

    Article  PubMed  CAS  Google Scholar 

  • Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the Archaeon Sulfolobus solfataricus. J Biol Chem 283(42):28641–28648

    Article  PubMed  CAS  Google Scholar 

  • Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488

    Article  PubMed  CAS  Google Scholar 

  • Zaparty M (2007) PhD thesis, University of Duisburg-Essen (Germany), http://duepublico.uni-duisburg- essen.de/

  • Zaparty M, Zaigler A, Stamme C, Soppa J, Hensel R, Siebers B (2008a) DNA microarray analysis of the central carbohydrate metabolism: glycolytic/gluconeogenic carbon switch in the hyperthermophilic Crenarchaeum Thermoproteus tenax. J Bacteriol 190(6):2231–2238

    Article  PubMed  CAS  Google Scholar 

  • Zaparty M, Tjaden B, Hensel R, Siebers B (2008b) The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Arch Microbiol 190:231–245

    Article  PubMed  CAS  Google Scholar 

  • Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P, van Wolferen M, von Jan M, Wieloch P, Albers SV, Driessen AJM, Klenk H-P, Schleper C, Schomburg D, van der Oost J, Wright PC, Siebers B (2010) “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 14:119–142

    Article  PubMed  CAS  Google Scholar 

  • Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” Group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269

    Article  CAS  Google Scholar 

  • Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain J, Lanzendörfer M, Kristiansson JK (1994) Screening for sulfolobales, their plasmids, and their viruses in Islandic solfataras. Syst Appl Microbiol 16:606–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Zaparty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Zaparty, M., Siebers, B. (2011). Physiology, Metabolism, and Enzymology of Thermoacidophiles. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_28

Download citation

Publish with us

Policies and ethics