Physiology, Metabolism, and Enzymology of Thermoacidophiles

Reconstruction of the Central Carbon Metabolic Network of Thermoacidophilic Archaea
  • Melanie ZapartyEmail author
  • Bettina Siebers


Adaptation and specialization to harsh environments represent hallmarks of members of the Archaea and this was originally, besides the presence of unique metabolic pathways (i.e., methanogenesis), regarded as a typical archaeal feature. However, meanwhile a wide distribution of mostly uncultured members in ordinary habitats such as ocean and lake waters or soil has been proven and Archaea are known to play major roles in the global ecosystems (DeLong 1998; DeLong and Pace 2001; Francis et al. 2005; Leininger et al. 2006).

Some extremophiles survive and thrive at temperatures over 100°C or down to 0°C, in extremely alkaline (around pH 11) acidic waters (pH < 1), extremely saline environments (>30% (w/v) salts), or combinations thereof. Typical environments from which these Archaea have been isolated include rift vents in the deep sea (e.g., black smokers), geysers, hot acidic springs and sulfuric waters, or salt lakes. Life under such extreme conditions requires effective...


Genome Sequence Information Trehalose Metabolism Complex Organic Substrate Sulfolobus Species Trehalose Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmed H, Tjaden B, Hensel R, Siebers B (2004) Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? Biochemical Society Trans 32:2–4Google Scholar
  2. Ahmed H, Ettema TJ, Tjaden B, Geerling AC, Van der Oost J, Siebers B (2005) The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea – a re-evaluation. Biochem J 390:529–540PubMedCrossRefGoogle Scholar
  3. Albers SV, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R, Driessen AJM, Schleper C (2006) Production of recombinant and tagged proteins in the hyperthermophilic Archaeon Sulfolobus solfataricus. Appl and Environm Microbiol 72(1):102–111CrossRefGoogle Scholar
  4. Albers SV, Driessen AJM (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145–149PubMedCrossRefGoogle Scholar
  5. Albers SV, Birkeland N-K, Driessen AJM, Gertig S, Haferkamp P, Klenk H-P, Kouril T, Manica A, Pham TK, Ruoff P, Schleper C, Schomburg D, Sharkey KJ, Siebers B, Sierocinski P, Steuer R, Van der Oost J, Westerhoff HV, Wieloch P, Wright PC, Zaparty M (2009) SulfoSYS – Sulfolobus Systems Biology: towards a Silicon Cell Model for the central carbohydrate metabolism of the Archaeon Sulfolobus solfataricus under temperature variation. Biochem Soc Trans 37:58–64PubMedCrossRefGoogle Scholar
  6. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  7. Andreesen JR, Gottschalk G (1969) The occurence of the modified Entner-Doudoroff pathway in Clostridium aceticum. Arch Microbiol 69:160–170Google Scholar
  8. Angelov A, Fuetterer O, Valerius O, Braus GH, Liebl W (2005) Properties of the recombinant glucose⁄galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus. FEBS J 272:1054–1062PubMedCrossRefGoogle Scholar
  9. Angelov A, Liebl W (2006) Insights into extreme thermoacidophily based on genome analysis of Picrophilus torridus and other thermoacidophilic archaea. J Biotechnol 126(1):3–10PubMedCrossRefGoogle Scholar
  10. Arguelles JC (2000) Physiological role of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224PubMedCrossRefGoogle Scholar
  11. Auernik KS, Cooper CR, Kelly RM (2008a) Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Curr Opin Biotechnol 19:445–453PubMedCrossRefGoogle Scholar
  12. Auernik KS, Maezato Y, Blum PH, Kelly RM (2008b) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–92PubMedCrossRefGoogle Scholar
  13. Bartolucci S, Rella R, Guagliardi A, Raia CA, Gambacorta A, De Rosa M, Rossi M (1987) Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. J Biol Chem 262:7725–7731PubMedGoogle Scholar
  14. Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786PubMedCrossRefGoogle Scholar
  15. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68PubMedCrossRefGoogle Scholar
  16. Brouns SJJ, Walther J, Snijders APL, van de Werken HJG, Willemen HLDM, Worm P, de Vos MGJ, Andersson A, Lundgren M, Mazon HFM, van den Heuvel RHH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J (2006) Identification of the missing links in prokaryotic pentose oxidation pathways- evidence for enzyme recruitment. J Biol Chem 281(37):27378–27388PubMedCrossRefGoogle Scholar
  17. Brunner NA, Siebers B, Hensel R (2001) Role of two different glyceraldehydes-3-phosphate dehydrogenases in controlling the reversible Embden-Meyerhof-Parnas pathway in Thermoproteus tenax: Regulation on protein and transcript level. Extremophiles 5:101–109PubMedCrossRefGoogle Scholar
  18. Bruegger K, Redder P, She Q, Confalonieri F, Zivanovic Y, Garrett RA (2002) Mobile elements in archaeal genomes. FEMS Microbiol Lett 10;206(2):131–41Google Scholar
  19. Bruegger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32(Pt 2):179–83CrossRefGoogle Scholar
  20. Budgen N, Danson MJ (1986) Metabolism of glucose via a modified ENtner-Doudoroff pathway in the thermoacidophilic archaeabacterium Thermoplasma acidophilum. FEBS Lett 196:207–210CrossRefGoogle Scholar
  21. Camacho ML, Brown RA, Bonete MJ, Danson MJ, Hough DW (1995) Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett 134:85–90PubMedCrossRefGoogle Scholar
  22. Cardona S, Remonsellez F, Guiliani N, Jerez CA (2001) The glycogen-bound polyphosphate kinase from Sulfolobus acidocaldarius is actually a glycogen synthase. Appl Environ Microbiol 67:4773–80PubMedCrossRefGoogle Scholar
  23. Chen L, Brügger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–9PubMedCrossRefGoogle Scholar
  24. Chen YS, Lee GC, Shaw JF (2006) Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. J Agric Food Chem 20;54(19):7098–104CrossRefGoogle Scholar
  25. Ciaramella M, Napoli A, Rossi M (2005) Another extreme genome: how to live at pH 0. Trends Microbiol 13(2):49–51PubMedCrossRefGoogle Scholar
  26. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 233:701–703CrossRefGoogle Scholar
  27. Crowe LM, Crowe JH (1992) Stabilization of dry liposomes by carbohydrates. Dev Biol Stand 74:285–294PubMedGoogle Scholar
  28. Danson MJ, Black SC, Woodland DL, Wood PA (1985) Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS 179(1):120–124CrossRefGoogle Scholar
  29. Danson MJ, Hugh DW (1992) The enzymology of archaebacterial pathways of central metabolism. In: Danson MJ, Hough DW, Lunt GG (eds) The archaebacteria: biochemistry and biotechnology. Portland Press, London Chapel Hill, pp 1–21Google Scholar
  30. Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic acidophilic mycoplasm isolated from a coal refuse pile. Science 170:1416–1418PubMedCrossRefGoogle Scholar
  31. Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67:9–15Google Scholar
  32. DeLong EF (1998) Everything in moderation: archaea as non-extremophiles. Curr Opin Genet 6:649–54CrossRefGoogle Scholar
  33. DeLong EF, Pace NR (2001) Environmental diversity of Bacteria and Archaea. Syst Biol 50:470–478PubMedCrossRefGoogle Scholar
  34. De Rosa M, Gambacorta A, Nicolaus B, Giardina P, Poerio E, Buonocore V (1984) Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 224:407–414PubMedGoogle Scholar
  35. De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast I Genetic evidence that trehlose is a thermoprotectant. Eur J Biochem 219:179–186PubMedCrossRefGoogle Scholar
  36. Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host–vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13(4):735–746PubMedCrossRefGoogle Scholar
  37. Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416PubMedCrossRefGoogle Scholar
  38. Elbein AD (1974) The metabolism of alpha-alpha trehalose. Adv Carbohyd Chem Biochem 30:227–256CrossRefGoogle Scholar
  39. Elzainy TA, Hassan MM, Allam AM (1973) New pathway for non-phosphorylated degradation of gluconate by Aspergillus niger. J Bacteriol 114:457–459PubMedGoogle Scholar
  40. Ettema TJG, Makarova KS, Jellema GL, Gierman HJ, Koonin EV, Huynen MA, de Vos WM, van der Oost J (2004) Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J Bacteriol 186(22):7754–7762PubMedCrossRefGoogle Scholar
  41. Ettema TJG, Ahmed H, Geerling ACM, Van der Oost J, Siebers B (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway. Extremophiles 12:75–88PubMedCrossRefGoogle Scholar
  42. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102(41):14683–14688PubMedCrossRefGoogle Scholar
  43. Fröls S, Gordon PM, Panlilio MA, Schleper C, Sensen CW (2007) Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays. Virology 365:48–59PubMedCrossRefGoogle Scholar
  44. Fütterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. PNAS 101(24):9091–9096PubMedCrossRefGoogle Scholar
  45. Gerlt JA, Babbitt PC (2000) Can sequence determine function? Genome Biol 1:0005.1–0005.10CrossRefGoogle Scholar
  46. Giæver HM, Styrvold OB, Kaasen I, Strom AR (1988) Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–49PubMedGoogle Scholar
  47. Goerisch H, Hartl T, Grossebüter W, Stezowski J (1985) Archaebacterial malate dehydrogenases. The enzymes from the thermoacidophilic organisms Sulfolobus acidocaldarius and Thermoplasma acidophilum show A-side stereospecificity for NAD+. Biochem J 226(3):885–888Google Scholar
  48. Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719PubMedGoogle Scholar
  49. Gueguen Y, Rolland JL, Schroeck S, Flament D, Defretin S, Saniez MH, Dietrich J (2001) Characterization of the maltooligsyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldricus. FEMS Microbiol Lett 194:201–206PubMedCrossRefGoogle Scholar
  50. Hansen T, Wendorff D, Schönheit P (2003) Bifunctional phosphoglucose/ phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily. J Biol Chem 279:2262–2272PubMedCrossRefGoogle Scholar
  51. Heath C, Posner MG, Aass HC, Upadhyay A, Scott DJ, Hough DW, Danson MJ (2007) The 2-oxoacid dehydrogenase multi-enzyme complex of the archaeon Thermoplasma acidophilum – recombinant expression, assembly and characterization. FEBS J 274(20):5406–5415PubMedCrossRefGoogle Scholar
  52. Helfert C, Gotsche S, Dahl M (1995) Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-α (1-)-glucosidase encoded by the treA gene. Mol Microbiol 16:111–120PubMedCrossRefGoogle Scholar
  53. Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364PubMedCrossRefGoogle Scholar
  54. Hottiger T, Schmutz P, Wiemken A (1987) Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J Bacteriol 169:5518–5522PubMedGoogle Scholar
  55. Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metalmobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12:38–47CrossRefGoogle Scholar
  56. Huegler M, Huber H, Stetter KO, Fuchs G (2003a) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173Google Scholar
  57. Huegler M, Krieger RS, Jahn M, Fuchs G (2003b) Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation. Eur J Biochem 270:736–744CrossRefGoogle Scholar
  58. Huegler M, Fuchs G (2005) Assaying for the 3-hydroxypropionate cycle of carbon fixation. Methods Enzymol 397:212–221CrossRefGoogle Scholar
  59. Itoh T, Suzuki K, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–63PubMedCrossRefGoogle Scholar
  60. Itoh T, Yoshikawa N, Takashina T (2007) Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Sys Evolution Microbiol 57:2557–2561CrossRefGoogle Scholar
  61. Janssen S, Schafer G, Anemuller S, Moll R (1997) A succinate dehydrogenase with novel structure and properties from the hyperthermophilic archaeon Sulfolobus acidocaldarius: genetic and biophysical characterization. J Bacteriol 179(17):5560–5569PubMedGoogle Scholar
  62. JGI (2007) DOE Joint Genome Institute available at
  63. Jones CE, Fleming TM, Cowan DA, Littlechild JA, Piper PW (1995) The phosphoglycerate kinase and glyceraldehyde-3-phosphtae dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus overlap by 8-bp. Eur J Biochem 233:800–808PubMedCrossRefGoogle Scholar
  64. Jung JH, Lee SB (2005) Identification and characterization of Thermoplasma acidophilum 2-keto-3-deoxy-D-gluconate kinase: A new class of sugar kinases. Biotechnol Bioprocess Eng 10:535–539CrossRefGoogle Scholar
  65. Jung JH, Lee SB (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: a new class of NADP+-specific aldehyde dehydrogenase. Biochem J 397:131–138PubMedCrossRefGoogle Scholar
  66. Kaasen I, Mc Dougall J, Strom AR (1994) Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene 145:9–15PubMedCrossRefGoogle Scholar
  67. Kardinahl S, Schmidt CL, Hansen T, Anemueller S, Petersen A, Schaefer G (1999) The strict molybdate-dependence of glucose-degradation by the thermoacidophilic Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme – an aldehyde oxidoreductase. Eur J Biochem 260:540–548PubMedCrossRefGoogle Scholar
  68. Karp PD (2004) Call for an enzyme genomics initiative. Genome Biol 5:401.1–401.3CrossRefGoogle Scholar
  69. Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97(26):14257–62PubMedCrossRefGoogle Scholar
  70. Kawarabayasi Y, Hino Y, Horikawa H, Jin-No K, Takahashi M, Sekine M, Baba S-I, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K-I, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140PubMedCrossRefGoogle Scholar
  71. Kehrer D, Ahmed H, Brinkman H, Siebers B (2007) The glycerate kinase of the hyperthermophilic archaeon T. tenax: New insights into phylogenetic distribution of physiological role of members of the three different families. BMC Genomics 8:301PubMedCrossRefGoogle Scholar
  72. Kim S, Lee SB (2005) Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. Biochem J 387:271–280PubMedCrossRefGoogle Scholar
  73. Kim S, Lee SB (2006) Characterization of Sulfolobus solfataricus 2-Keto-3-deoxy-D-gluconate Kinase in the modified Entner-Doudoroff pathway. Biosci Biotechnol Biochem 70(6):1308–1316PubMedCrossRefGoogle Scholar
  74. Kobayashi KM, Kato Y, Miura M, Kettoku T, Komeda A, Iwamatsu (1996) Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeon in Sulfolobus solfataricus. Biosci Biotechnol Biochem 60(11):1882–5PubMedCrossRefGoogle Scholar
  75. Koenig H, Sorko R, Zillig W, Reiter WD (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303CrossRefGoogle Scholar
  76. Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190(3):355–69PubMedCrossRefGoogle Scholar
  77. Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson M (2003) Metabolic pathway promiscuity in the Archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate Aldolase. J Biol Chem 278(36):34066–34072PubMedCrossRefGoogle Scholar
  78. Lamble HJ, Theodossis A, Milburn CC, Taylor GL, Bull SD, Hough DW, Danson M (2005) Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869PubMedCrossRefGoogle Scholar
  79. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–9PubMedCrossRefGoogle Scholar
  80. Luebben M, Schaefer G (1989) Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and presence of an f0-related N, N′-dicyclohexylcarbodiimide-binding proteolipid. JBacteriol 171(11):6106–6116Google Scholar
  81. Maréchal LR, Belocopitow E (1972) Metabolism of trehalose in Euglena gracilis I. Partial purification and some properties of trehalose phosphorylase. J Biol Chem 247:3223–3228PubMedGoogle Scholar
  82. Martins LO, Huber R, Huber H, Stetter KO, Da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63(3):896–902PubMedGoogle Scholar
  83. Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182(9):2574–81PubMedCrossRefGoogle Scholar
  84. Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181PubMedCrossRefGoogle Scholar
  85. Matsubara H, Goto K, Matsumura T, Mochida K, Iwaki M, Niwa M, Yamasato K (2002) Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω-alicyclic fatty acid-containing bacterium isolated from acidic beverages. J Syst Evol Microbiol 52:1681–1685CrossRefGoogle Scholar
  86. Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K-O, Fuchs G (1999) Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol 181:1088–1098PubMedGoogle Scholar
  87. Mizanur RM, Zea CJ, Pohl NL (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126(49):15993–8PubMedCrossRefGoogle Scholar
  88. Mizanur RM, Griffin AK, Pohl NL (2008) Recombinant production and biochemical characterization of a hyperthermostable alpha-glucan/maltodextrin phosphorylase from Pyrococcus furiosus. Archaea 2:169–76PubMedCrossRefGoogle Scholar
  89. Mukund S, Adams MW (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic Archaeon Pyrococcus furiosus. J Biol Chem 270(15):8389–8392PubMedCrossRefGoogle Scholar
  90. Musfeldt M, Selig M, Schoenheit P (1999) Acetyl coenzyme A synthetase (ADP forming) from the hyperthermophilic Archaeon Pyrococcus furiosus: identification, cloning, separate expression of the encoding genes acdAI and acdBI, in Escherichia coli, and in vitro reconstitution of the active heterotetrameric enzyme from its recombinant subunits. J Bacteriol 181(18):5885–5888PubMedGoogle Scholar
  91. Nicolaus B, Gambacorta A, Basso AL, Riccio R, De Rosa M, Grant WD (1988) Trehalose in archaebacteria. System Appl Microbiol 10:215–217CrossRefGoogle Scholar
  92. Nishimasu H, Fushinobu S, Shoun H, Wakagi T (2006) Identification and characterization of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J Bacteriol 188(5):2014–2019PubMedCrossRefGoogle Scholar
  93. Noh M, Jung JH, Lee SB (2006) Purification and characterization of glycerate kinase from the thermoacidophilic Archaeon Thermoplasma acidophilum: An enzyme belonging to the second glycerate kinase family. Biotechnol Bioprocess Eng 11:344–350CrossRefGoogle Scholar
  94. Orita I, Yurimoto H, Hirai R et al (2005) The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway. J Bacteriol 187(11):3636–42PubMedCrossRefGoogle Scholar
  95. Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T, Sakai Y (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the Archaeon Thermococcus kodakaraensis. J Bacteriol 188(13):4698–4704PubMedCrossRefGoogle Scholar
  96. Park HS, Park J-T, Kang HK, Cha H, Kim DS, Kim JW, Park K-H (2007) TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alpha-glucanotransferase activities. Biosci Biotechnol Biochem 71:1348–1352PubMedCrossRefGoogle Scholar
  97. Potters MB, Solow BT, Bischoff KM, Graham DE, Lower BH, Helm R, Kennelly PJ (2003) Phosphoprotein with phosphoglycerate mutase activity from the Archaeon Sulfolobus solfataricus. J Bacteriol 185(7):2112–2121PubMedCrossRefGoogle Scholar
  98. Puchegger S, Redl B, Stoffler G (1990) Purification and properties of a thermostable fumarate hydratase from the archaeobacterium Sulfolobus solfataricus. J Gen Microbiol 136:1537–1541PubMedGoogle Scholar
  99. Qu Q, Lee SJ, Boos W (2004) TreT, a novel trehalose glycosyl-transferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:46Google Scholar
  100. Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (2002) A novel candidate for the true fructose-1, 6-bisphosphatase in Archaea. J Biol Chem 277(34):30649–30655PubMedCrossRefGoogle Scholar
  101. Rashid N, Imanaka H, Fukui T, Atomi H, Imanaka T (2004) Presence of a novel phosphopentomutase and a 2-deoxyribose5-phosphate aldolase reveals a metabolic link between pentoses and central carbon metabolism in the hyperthermophilic Archaeon Thermococcus kodakarensis. J Bacteriol 186:13Google Scholar
  102. Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324PubMedCrossRefGoogle Scholar
  103. Ray WK, Keith SM, DeSantis AM, Hunt JP, Larson TJ, Helm RF, Kennelly PJ (2005) A phosphohexomutase from the Archaeon Sulfolobus solfataricus is covalently modified by phosphorylation on serine. J Bacteriol 187(12):4270–4275PubMedCrossRefGoogle Scholar
  104. Redder P, She Q, Garrett RA (2001) Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. J Mol Biol 306(1):1–6PubMedCrossRefGoogle Scholar
  105. Reher M, Schönheit P (2006) Glyceraldehyde dehydrogenases from the thermoacidophilic euryarchaeota Picrophilus torridus and Thermoplasma acidophilum, key enzymes of the non-phosphorylative Entner-Doudoroff pathway, constitute a novel enzyme family within the aldehyde dehydrogenase superfamily. FEBS Lett 580:1198–1204PubMedCrossRefGoogle Scholar
  106. Reher M, Bott M, Schönheit P (2006) Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus. FEMS Microbiol Lett 259:113–119PubMedCrossRefGoogle Scholar
  107. Reher M, Gebhard S, Schoenheit P (2007) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), keyenzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix. FEMS Microbiol Lett 273:196–205PubMedCrossRefGoogle Scholar
  108. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 106:8605–8610PubMedCrossRefGoogle Scholar
  109. Reher M, Fuhrer T, Bott M, Schoenheit P (2010) The nonphosphorylative entner-doudoroff pathway in the thermoacidophilic euryarchaeon picrophilus torridus involves a novel 2-keto-3-deoxygluconate- specific aldolase. J Bacteriol 192(4): 964–974PubMedCrossRefGoogle Scholar
  110. Rimmele M, Boos W (1994) Trehalose-6-phosphat hydrolase of Escherichia coli. J Bacteriol 176:5654–5664PubMedGoogle Scholar
  111. Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–13PubMedCrossRefGoogle Scholar
  112. Russo AD, Rullo R, Masullo M, Ianniciello G, Arcari P, Bocchini V (1995) Glyceraldehyde-3-phosphate dehydrogenase in the hyperthermophilic archaeon Sulfolobus solfataricus: characterization and significance in glucose metabolism. Biochem Mol Biol Int 36:123–135PubMedGoogle Scholar
  113. Say RF, Fuchs G (2010) Fructose 1, 6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081PubMedCrossRefGoogle Scholar
  114. Schleper C, Pühler G, Kühlmorgen B, Zillig W (1995a) Life at extremely low pH. Nature 375:741–742PubMedCrossRefGoogle Scholar
  115. Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995b) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059PubMedGoogle Scholar
  116. Schleper C, Puhler G, Klenk HP, Zillig W (1996) Picrophilus oshimae and Picrophilus torridus fam. nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 46:814–816CrossRefGoogle Scholar
  117. Segerer A, Neuner AM, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564CrossRefGoogle Scholar
  118. Segerer A, Langworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatara fields. Syst Appl Microbiol 10:161–171CrossRefGoogle Scholar
  119. Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Leeuwenhoek 81:73–83PubMedCrossRefGoogle Scholar
  120. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Groth Clausen I, Curtis B-A, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001a) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. PNAS 98(14):7835–7840PubMedCrossRefGoogle Scholar
  121. She Q, Peng X, Zillig W, Garrett RA (2001b) Gene capture in archaeal chromosomes. Nature 409(6819):478PubMedCrossRefGoogle Scholar
  122. Siebers B, Tjaden B, Michalke K, Dörr C, Ahmed H, Zaparty M, Gordon P, Sensen C, Zibat A, Klenk HP, Schuster SC, Hensel R (2004) Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol 186:2179–2194PubMedCrossRefGoogle Scholar
  123. Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 8:695–705PubMedCrossRefGoogle Scholar
  124. Sisignano M, Morbitzer D, Gägens J, Oldiges M, Soppa J (2009) A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not the other branched chain amino acids. Microbiology epub ahead of print, doi:10.1099/mic.0.033449–0Google Scholar
  125. Smith PF, Langworthy TA, Smith MR (1975) Polypeptide nature of growth requirement in Yeast extract for Thermoplasma acidophilum. J Bacteriol 124:884–892PubMedGoogle Scholar
  126. Smith LD, Stevenson KJ, Hough DW, Danson MJ (1987) Citrate synthase from the thermophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. FEBS Lett 225(1–2):277–281CrossRefGoogle Scholar
  127. Snijders APL, Walther J, Peter S, Kinnman I, de Vos MGJ, van de Werken HJG, Brouns SJJ, van der Oost J, Wright PC (2006) Reconstruction of central carbon metabolism in Sulfolobus solafatricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 6(15):1518–1529PubMedCrossRefGoogle Scholar
  128. Soderberg T (2005) Biosythesis of ribose-5-phosphate and erythrose-4-phosphate in Archaea: a phylogenetic analysis of archaeal genomes. Archaea 1:347–352PubMedCrossRefGoogle Scholar
  129. Solow B, Bichoff KM, Zylka MJ, Kennelly PJ (1998) Archaeal phosphoproteins Identification of a hexosephosphate mutase and the a-subunit of succinyl-CoA synthetase in the extreme acidothermophile Sulfolobus solfataricus. Protein Sci 7:105–111PubMedCrossRefGoogle Scholar
  130. Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:05–210CrossRefGoogle Scholar
  131. Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N, Kon T, Ueki T, Yamagishi A, Oshima T (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44PubMedCrossRefGoogle Scholar
  132. Tjaden B, Plagens A, Dörr C, Siebers B, Hensel R (2006) Phosphoenolpyruvate synthetase and pyruvate phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Mol Microbiol 60:287–298PubMedCrossRefGoogle Scholar
  133. Tomlinson GA, Koch TK, Hochstein LI (1974) The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol 20:1085–1091CrossRefGoogle Scholar
  134. Tsusaki K, Nishimoto T, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1997) Cloning and sequencing of trehalose synthase gene from Thermus aquaticus. Biochem Biophys Acta 1334:28–32PubMedCrossRefGoogle Scholar
  135. Uhrigshardt H, Walden M, John H, Anemüller S (2001) Purification and characterization of the first archaeal aconitase from the thermoacidophilic Sulfolobus acidocaldarius. Eur J Biochem 268:1760–1771PubMedCrossRefGoogle Scholar
  136. Uhrigshardt H, Walden M, John H, Petersen A, Anemüller S (2002) Evidence for an operative glyoxylate cycle in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Lett 513(2):223–229PubMedCrossRefGoogle Scholar
  137. Van de Vossenberg JLCM, Driessen AJM, Zillig W, Konings WN (1998) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74PubMedCrossRefGoogle Scholar
  138. Van der Oost J, Siebers B (2007) The glycolytic pathways of Archaea: evolution by tinkering. In: Garrett RA, Klenk H-P (eds) Archaea: evolution, physiology and molecular biology, vol 22, 1st edn. MA, Blackwell, Malden, pp 247–260Google Scholar
  139. Verhees CH, Kengen SW, Tuininga JE, Schut GJ, Adams MWW, De Vos WM, Van der Oost J (2003) The unique features of glycolytic pathways in Archaea. Biochem J 375:231–246, Erratum in: Biochem. J. (2004) 377:819-822PubMedCrossRefGoogle Scholar
  140. Wagner M, Berkner S, Ajon M, Driessen AJM, Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Biochem Soc Trans 37:97–101CrossRefGoogle Scholar
  141. Whitaker RJ, Grogan DW, Taylor JW (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–8PubMedCrossRefGoogle Scholar
  142. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequences analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269PubMedCrossRefGoogle Scholar
  143. Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the Archaeon Sulfolobus solfataricus. J Biol Chem 283(42):28641–28648PubMedCrossRefGoogle Scholar
  144. Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488PubMedCrossRefGoogle Scholar
  145. Zaparty M (2007) PhD thesis, University of Duisburg-Essen (Germany), http://duepublico.uni-duisburg-
  146. Zaparty M, Zaigler A, Stamme C, Soppa J, Hensel R, Siebers B (2008a) DNA microarray analysis of the central carbohydrate metabolism: glycolytic/gluconeogenic carbon switch in the hyperthermophilic Crenarchaeum Thermoproteus tenax. J Bacteriol 190(6):2231–2238PubMedCrossRefGoogle Scholar
  147. Zaparty M, Tjaden B, Hensel R, Siebers B (2008b) The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation. Arch Microbiol 190:231–245PubMedCrossRefGoogle Scholar
  148. Zaparty M, Esser D, Gertig S, Haferkamp P, Kouril T, Manica A, Pham TK, Reimann J, Schreiber K, Sierocinski P, van Wolferen M, von Jan M, Wieloch P, Albers SV, Driessen AJM, Klenk H-P, Schleper C, Schomburg D, van der Oost J, Wright PC, Siebers B (2010) “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 14:119–142PubMedCrossRefGoogle Scholar
  149. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz I (1980) The Sulfolobus-“Caldariella” Group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269CrossRefGoogle Scholar
  150. Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain J, Lanzendörfer M, Kristiansson JK (1994) Screening for sulfolobales, their plasmids, and their viruses in Islandic solfataras. Syst Appl Microbiol 16:606–62Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Institute for Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
  2. 2.Molecular Enzyme Technology and BiochemistryBiofilm Centre, University of Duisburg-EssenDuisburgGermany

Personalised recommendations