Genetic Tools and Manipulations of the Hyperthermophilic Heterotrophic Archaeon Thermococcus kodakarensis


The robust and rapid growth of heterotrophic hyperthermophilic Thermococcales in laboratory culture has resulted in their extensive study. As experimental systems, they are used to investigate archaeal biochemistry, molecular biology, and hyperthermophily. This has led to much of our current understanding of Archaea, the discovery of novel metabolic pathways and biocatalysts, commercially useful heat-stable enzymes, and biotechnology applications. Six genome sequences have been established, but genetic techniques and tools that make novel strain constructions and in vivo probing of gene functions have been developed only for Thermococcus kodakarensis. Here we describe the development and current status of T. kodakarensis genetics, and provide detailed descriptions of the procedures, strains, and tools available for genetic research with this heterotrophic archaeal hyperthermophile.


Reporter System Intermediate Strain Shuttle Plasmid Argininosuccinate Lyase Uracil Auxotroph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Atomi H, Fukui T, Kanai T, Morikawa M, Imanaka T (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. Archaea 1:263–267PubMedCrossRefGoogle Scholar
  2. Cavicchioli R (2007) Archaea: molecular and cellular biology. ASM, WashingtonGoogle Scholar
  3. Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Quérellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512PubMedCrossRefGoogle Scholar
  4. Dev K, Santangelo TJ, Rothenburg S, Neculai D, Dey M, Sicheri F, Dever TE, Reeve JN, Hinnebusch AG (2009) Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: implications for aIF2B function and eIF2B regulation. J Mol Biol 392:701–722PubMedCrossRefGoogle Scholar
  5. Endoh T, Kanai T, Imanaka T (2007) A highly productive system for cell-free protein synthesis using a lysate of the hyperthermophilic archaeon, Thermococcus kodakaraensis. Appl Microbiol Biotechnol 74:1153–1161PubMedCrossRefGoogle Scholar
  6. Ezaki S, Miyaoku K, Nishi K, Tanaka T, Fujiwara S, Takagi M, Atomi H, Imanaka T (1999) Gene analysis and enzymatic properties of thermostable β-glycosidase from Pyrococcus kodakaraensis KOD1. J Biosci Bioeng 88:30–135CrossRefGoogle Scholar
  7. French SL, Santangelo TJ, Beyer A, Reeve JN (2007) Transcription and translation are coupled in Archaea. Mol Biol Evol 24:893–895PubMedCrossRefGoogle Scholar
  8. Fujiwara S, Aki R, Yoshida M, Higashibata H, Imanaka T, Fukuda W (2008) Expression profiles and physiological roles of two types of molecular chaperonins from the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 74:7306–7312PubMedCrossRefGoogle Scholar
  9. Fukuda W, Morimoto N, Imanaka T, Fujiwara S (2008) Agmatine is essential for the cell growth of Thermococcus kodakaraensis. FEMS Microbiol Lett 287:113–120PubMedCrossRefGoogle Scholar
  10. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363PubMedCrossRefGoogle Scholar
  11. Garrett RA, Klenk H-P (2007) Archaea: evolution, physiology, and molecular biology. Blackwell, OxfordGoogle Scholar
  12. Garrity GM, Holt JG (2002) Euryarchaeota euryarchaeota phy. nov. In: Boone RD, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 211–355Google Scholar
  13. Hirata A, Kanai T, Santangelo TJ, Tajiri M, Manabe K, Reeve JN, Imanaka T, Murakami KS (2008a) Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. Mol Microbiol 70:623–633PubMedCrossRefGoogle Scholar
  14. Hirata A, Klein BJ, Murakami KS (2008b) The X-ray crystal structure of RNA polymerase from Archaea. Nature 451:851–854PubMedCrossRefGoogle Scholar
  15. Kanai T, Imanaka H, Nakajima A, Uwamori K, Omori Y, Fukui T, Atomi H, Imanaka T (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J Biotechnol 30(116):271–282CrossRefGoogle Scholar
  16. Kanai T, Akerboom J, Takedomi S, van de Werken HJ, Blombach F, van der Oost J, Murakami T, Atomi H, Imanaka T (2007) A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes. J Biol Chem 282:33659–33670PubMedCrossRefGoogle Scholar
  17. Kanai T, Takedomi S, Fujiwara S, Atomi H, Imanaka T (2010) Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis. J Biochem 147:361–370PubMedCrossRefGoogle Scholar
  18. Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otsuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Kikuchi H (1998) Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res 5:55–76PubMedCrossRefGoogle Scholar
  19. Lee HS, Kang SG, Bae SS, Lim JK, Cho Y, Kim YJ, Jeon JH, Cha SS, Kwon KK, Kim HT, Park CJ, Lee HW, Kim SI, Chun J, Colwell RR, Kim SJ, Lee JH (2008) The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. J Bacteriol 190:7491–7499PubMedCrossRefGoogle Scholar
  20. Lepage E, Marguet E, Geslin C, Matte-Tailliez O, Zillig W, Forterre P, Tailliez P (2004) Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. Appl Environ Microbiol 70:1277–1286PubMedCrossRefGoogle Scholar
  21. Matsumi R, Manabe K, Fukui T, Atomi H, Imanaka T (2007) Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance. J Bacteriol 189:2683–2691PubMedCrossRefGoogle Scholar
  22. Matsuno Y, Sugai A, Higashibata H, Fukuda W, Ueda K, Uda I, Sato I, Itoh T, Imanaka T, Fujiwara S (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 73:104–108PubMedCrossRefGoogle Scholar
  23. Morikawa M, Izawa Y, Rashid N, Hoaki T, Imanaka T (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol 60:4559–4566PubMedGoogle Scholar
  24. Murakami T, Kanai T, Takata H, Kuriki T, Imanaka T (2006) A novel branching enzyme of the GH-57 family in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 188:5915–5924PubMedCrossRefGoogle Scholar
  25. Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T, Sakai Y (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J Bacteriol 188:4698–4704PubMedCrossRefGoogle Scholar
  26. Rashid N, Imanaka H, Kanai T, Fukui T, Atomi H, Imanaka T (2002) A novel candidate for the true fructose-1, 6-bisphosphatase in archaea. J Biol Chem 277:30649–30655PubMedCrossRefGoogle Scholar
  27. Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Meth Enzymol 330:134–157PubMedCrossRefGoogle Scholar
  28. Santangelo TJ, Reeve JN (2010) Deletion of switch 3 results in an archaeal RNA polymerase that is defective in transcript elongation. J Biol Chem 285:23908–23915PubMedCrossRefGoogle Scholar
  29. Santangelo TJ, Čuboňová L, James CL, Reeve JN (2007) TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 367:344–357PubMedCrossRefGoogle Scholar
  30. Santangelo TJ, Čuboňová L, Masumi R, Atomi H, Imanaka T, Reeve JN (2008a) Polarity in archaeal operon transcription in Thermococcus kodakaraensis. J Bacteriol 190:2244–2248PubMedCrossRefGoogle Scholar
  31. Santangelo TJ, Čuboňová L, Reeve JN (2008b) Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. Appl Environ Microbiol 74:3099–3104PubMedCrossRefGoogle Scholar
  32. Santangelo TJ, Čuboňová L, Skinner KM, Reeve JN (2009) Archaeal intrinsic transcription termination in vivo. J Bacteriol 191:7102–7108PubMedCrossRefGoogle Scholar
  33. Santangelo TJ, Čuboňová L, Reeve JN (2010) Thermococcus kodakarensis genetics: TK1827-encoded beta-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. Appl Environ Microbiol 76:1044–1052PubMedCrossRefGoogle Scholar
  34. Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220PubMedCrossRefGoogle Scholar
  35. Sato T, Imanaka H, Rashid N, Fukui T, Atomi H, Imanaka T (2004) Genetic evidence identifying the true gluconeogenic fructose-1, 6-bisphosphatase in Thermococcus kodakaraensis and other hyperthermophiles. J Bacteriol 186:5799–5807PubMedCrossRefGoogle Scholar
  36. Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899PubMedCrossRefGoogle Scholar
  37. Sato T, Atomi H, Imanaka T (2007) Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315:1003–1006PubMedCrossRefGoogle Scholar
  38. Soler N, Justome A, Quevillon-Cheruel S, Lorieux F, Le Cam E, Marguet E, Forterre P (2007) The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus. Mol Microbiol 662:357–370CrossRefGoogle Scholar
  39. Soler N, Marguet E, Cortez D, Desnoues N, Keller J, van Tilbeurgh H, Sezonov G, Forterre P (2010) Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins. Nucleic Acids Res 38:5088–5104PubMedCrossRefGoogle Scholar
  40. Teske A, Edgcomb V, Rivers AR, Thompson JR, de Vera Gomez A, Molyneaux SJ, Wirsen CO (2009) A molecular and physiological survey of a diverse collection of hydrothermal vent Thermococcus and Pyrococcus isolates. Extremophiles 13:905–915PubMedCrossRefGoogle Scholar
  41. Yokooji Y, Tomita H, Atomi H, Imanaka T (2009) Pantoate kinase and phosphopanto-thenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem 284:28137–28145PubMedCrossRefGoogle Scholar
  42. Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F (2009) Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biol 10:R70PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of MicrobiologyOhio State UniversityColumbusUSA

Personalised recommendations