Advertisement

Organic Compatible Solutes of Prokaryotes that Thrive in Hot Environments: The Importance of Ionic Compounds for Thermostabilization

  • Helena Santos
  • Pedro Lamosa
  • Nuno Borges
  • Luís G. Gonçalves
  • Tiago Pais
  • Marta V. Rodrigues

Introduction

Many mesophilic organisms use uncharged, small organic compounds, designated compatible solutes (Brown 1976), to preserve cell viability under different stressful environmental conditions, namely to balance fluctuations in the osmotic pressure of the external milieu (Brown 1976; da Costa et al. 1998; Roberts 2005). In some cases, small molecules, like sarcosine and trimethylamine N-oxide, are used to counteract the potentially lethal, denaturing effect brought about by the accumulation of urea in the cell under physiological conditions (Yancey and Somero 1979; Sackett 1997; Yancey 2005; Treberg et al. 2006). Not surprisingly, microorganisms adapted to thrive in hot, marine environments accumulate organic solutes, which are believed to play a role in the protection of cell proteins, and other macromolecules, against structural disruption caused by high thermal energy (Santos et al. 2007a). Several radiation resistant microorganisms accumulate trehalose, an organic solute...

Keywords

Heat Stress Organic Solute Compatible Solute Thermophilic Bacterium Charged Solute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was funded by the Fundação para a Ciência e a Tecnologia (FCT) and Programa Operacional Ciência e Inovação (POCTI), Portugal, PTDC/BIA-MIC/71146/2006, and PTDC/BIO/70806/2006. L.G. Gonçalves, T. Pais and M.V. Rodrigues acknowledge grants from FCT, Portugal (SFRH/BPD/26905/2006, SFRH/BD/42210/2007, and SFRH/BD/25539/2005, respectively). The NMR spectrometers are part of The National NMR Network (REDE/1517/RMN/2005), supported by “Programa Operacional Ciência e Inovação (POCTI) 2010” and Fundação para a Ciência e a Tecnologia (FCT).

References

  1. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Arakawa T, Ejima D, Kita Y, Tsumoto K (2006) Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmaceutical drugs. Biochim Biophys Acta 1764:1677–1687PubMedCrossRefGoogle Scholar
  3. Borges N, Ramos A, Raven NDH, Sharp RJ, Santos H (2002) Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209–216PubMedCrossRefGoogle Scholar
  4. Borges N, Marugg JD, Empadinhas N, da Costa MS, Santos H (2004) Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J Biol Chem 279:9892–9898PubMedCrossRefGoogle Scholar
  5. Borges N, Gonçalves LG, Rodrigues MV, Siopa F, Ventura R, Maycock C, Lamosa P, Santos H (2006) Biosynthetic pathways of inositol and glycerol phosphodiesters used by the hyperthermophile Archaeoglobus fulgidus in stress adaptation. J Bacteriol 188:8128–8135PubMedCrossRefGoogle Scholar
  6. Borges N, Matsumi R, Imanaka T, Atomi H, Santos H (2010) Thermococcus kodakarensis mutants deficient in di-myo-inositol phosphate use aspartate to cope with heat stress. J Bacteriol 192:191–197PubMedCrossRefGoogle Scholar
  7. Bouveng H, Lindberg B, Wickberg B (1955) Low-molecular carbohydrates in algae. Acta Chem Scand 9:807–809CrossRefGoogle Scholar
  8. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedGoogle Scholar
  9. Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283:7309–7313PubMedCrossRefGoogle Scholar
  10. Chen L, Spiliotis ET, Roberts MF (1998) Biosynthesis of di-myo-inositol-1, 1′-phosphate, a novel osmolyte in hyperthermophilic archaea. J Bacteriol 180:3785–3792PubMedGoogle Scholar
  11. Chen L, Zhou C, Yang H, Roberts MF (2000) Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry 39:12415–12423PubMedCrossRefGoogle Scholar
  12. Christoffersen M, Bolvig S, Tüchsen E (1996) Salt effects on the amide hydrogen exchange of bovine pancreatic trypsin inhibitor. Biochemistry 35:2309–2315PubMedCrossRefGoogle Scholar
  13. Ciulla RA, Burggraf S, Stetter KO, Roberts MF (1994a) Occurrence and role of di-myo-inositol-1, 1′-phosphate in Methanococcus igneus. Appl Environ Microbiol 60:3660–3664PubMedGoogle Scholar
  14. Ciulla R, Clougherty C, Belay N, Krishnan S, Zhou C, Byrd D, Roberts MF (1994b) Halotolerance of Methanobacterium thermoautotrophicum delta H and Marburg. J Bacteriol 176:3177–3187PubMedGoogle Scholar
  15. da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153PubMedGoogle Scholar
  16. Doan-Nguyen V, Loria JP (2007) The effects of cosolutes on protein dynamics: the reversal of denaturant-induced protein fluctuations by trimethylamine N-oxide. Protein Sci 16:20–29PubMedCrossRefGoogle Scholar
  17. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27RPubMedCrossRefGoogle Scholar
  18. Empadinhas N (2005) Pathways for the synthesis of mannosylglycerate in prokaryotes: genes, enzymes and evolutionary implications. PhD thesis, University of Coimbra, PortugalGoogle Scholar
  19. Empadinhas N, da Costa MS (2008a) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–161PubMedGoogle Scholar
  20. Empadinhas N, da Costa MS (2008b) To be or not to be a compatible solute: bioversatility of mannosylglycerate and glucosylglycerate. Syst Appl Microbiol 31:159–168PubMedCrossRefGoogle Scholar
  21. Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii: biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588PubMedCrossRefGoogle Scholar
  22. Empadinhas N, Albuquerque L, Henne A, Santos H, da Costa MS (2003) The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate. Appl Environ Microbiol 69:3272–3279PubMedCrossRefGoogle Scholar
  23. Empadinhas N, Albuquerque L, Costa J, Zinder SH, Santos MA, Santos H, da Costa MS (2004) A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase. J Bacteriol 186:4075–4084PubMedCrossRefGoogle Scholar
  24. Empadinhas N, Mendes V, Simões C, Santos MS, Mingote A, Lamosa P, Santos H, da Costa MS (2007) Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile. Extremophiles 11:667–673PubMedCrossRefGoogle Scholar
  25. Faria TQ, Knapp S, Ladenstein R, Maçanita AL, Santos H (2003) Protein stabilisation by compatible solutes: effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. Chembiochem 4:734–741PubMedCrossRefGoogle Scholar
  26. Faria TQ, Lima JC, Bastos M, Macanita AL, Santos H (2004) Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease A from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry. J Biol Chem 279:48680–48691PubMedCrossRefGoogle Scholar
  27. Faria TQ, Mingote A, Siopa F, Ventura R, Maycock C, Santos H (2008) Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms. Carbohydr Res 343:3025–3033PubMedCrossRefGoogle Scholar
  28. Fernandes C, Mendes V, Costa J, Empadinhas N, Jorge C, Lamosa P, Santos H, da Costa MS (2010) Two alternative pathways for the synthesis of the rare compatible solute mannosylglucosylglycerate in Petrotoga mobilis. J Bacteriol 192:1624–1633PubMedCrossRefGoogle Scholar
  29. Flint J, Taylor E, Yang M, Bolam DN, Tailford LE, Martinez-Fleites C, Dodson EJ, Davis BG, Gilbert HJ, Davies GJ (2005) Structural dissection and high-throughput screening of mannosylglycerate synthase. Nat Struct Mol Biol 12:608–614PubMedCrossRefGoogle Scholar
  30. Foord RL, Leatherbarrow RJ (1998) Effect of osmolytes on the exchange rates of backbone amide protons in proteins. Biochemistry 37:2969–2978PubMedCrossRefGoogle Scholar
  31. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328PubMedGoogle Scholar
  32. Gonçalves LG (2008) Osmo- and thermo-adaptation in hyperthermophilic Archaea: identification of compatible solutes, accumulation profiles, and biosynthetic routes in Archaeoglobus spp. PhD thesis, Instituto de Tecnologia Química e Biológica, PortugalGoogle Scholar
  33. Gonçalves LG, Huber R, da Costa MS, Santos H (2003) A variant of the hyperthermophile Archaeoglobus fulgidus adapted to grow at high salinity. FEMS Microbiol Lett 218:239–244PubMedCrossRefGoogle Scholar
  34. Gonçalves LG, Lamosa P, Huber R, Santos H (2008) Di-myo-inositol phosphate and novel UDP-sugars accumulate in the extreme hyperthermophile Pyrolobus fumarii. Extremophiles 12:383–389PubMedCrossRefGoogle Scholar
  35. Gonçalves S, Borges N, Santos H, Matias PM (2009) Crystallization and preliminary X-ray analysis of mannosyl-3-phosphoglycerate synthase from Thermus thermophilus HB27. Acta Crystallographica F 65:1014–1017Google Scholar
  36. Gonçalves S, Borges N, Esteves AM, Victor B, Soadres CM, Santos H, Matias PM (2010) Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase provides evidence for a second catalytic metal ion and new insight into the retaining mechanism of glycosyltransferases. J Biol Chem 285(23):17857–17868PubMedCrossRefGoogle Scholar
  37. Gorkovenko A, Roberts MF (1993) Cyclic 2, 3-diphosphoglycerate as a component of a new branch in gluconeogenesis in Methanobacterium thermoautotrophicum delta H. J Bacteriol 175:4087–4095PubMedGoogle Scholar
  38. Gorkovenko A, Roberts MF, White RH (1994) Identification, biosynthesis, and function of 1, 3, 4, 6-hexanetetracarboxylic acid in Methanobacterium thermoautotrophicum delta H. Appl Environ Microbiol 60:1249–1253PubMedGoogle Scholar
  39. Goude R, Renaud S, Bonnassie S, Bernard T, Blanco C (2004) Glutamine, glutamate, and alpha-glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi strain 3937. Appl Environ Microbiol 70:6535–6541PubMedCrossRefGoogle Scholar
  40. Harries D, Rösgen J (2008) A practical guide on how osmolytes modulate macromolecular properties. Meth Cell Biol 84:679–735CrossRefGoogle Scholar
  41. Horlacher R, Xavier KB, Santos H, DiRuggiero J, Kossmann M, Boos W (1998) Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 180:680–689PubMedGoogle Scholar
  42. Hu CY, Pettitt BM, Roesgen J (2009) Osmolyte solutions and protein folding. F1000 Biol Reports 1:1–3Google Scholar
  43. Jorge CD, Lamosa P, Santos H (2007) Alpha-D-mannopyranosyl-(1→2)-alpha-D-glucopyranosyl-(1→2)-glycerate in the thermophilic bacterium Petrotoga miotherma-structure, cellular content and function. FEBS J 274:3120–3127PubMedCrossRefGoogle Scholar
  44. Kanodia S, Roberts MF (1983) Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 80:5217–5221PubMedCrossRefGoogle Scholar
  45. Kawamura T, Watanabe N, Tanaka I (2008) Structure of mannosyl-3-phosphoglycerate phosphatase from Pyrococcus horikoshii. Acta Crystallographica D 64:1267–1276Google Scholar
  46. Knubovets T, Osterhout JJ, Connolly PJ, Klibanov AM (1999) Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc Natl Acad Sci USA 96:1262–1267PubMedCrossRefGoogle Scholar
  47. Kollman VH, Hanners JL, London RE, Adame EG, Walker TE (1979) Photosynthetic preparation and characterization of 13C-labeled carbohydrates in Agmenellum quadruplicatum. Carbohydr Res 73:193–202CrossRefGoogle Scholar
  48. Krishna MM, Hoang L, Lin Y, Englander SW (2004) Hydrogen exchange methods to study protein folding. Methods 34:51–64PubMedCrossRefGoogle Scholar
  49. Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Systems 4:6PubMedCrossRefGoogle Scholar
  50. Lamosa P, Martins LO, da Costa MS, Santos H (1998) Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl Environ Microbiol 64:3591–3598PubMedGoogle Scholar
  51. Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979PubMedCrossRefGoogle Scholar
  52. Lamosa P, Turner DL, Ventura R, Maycock C, Santos H (2003) Protein stabilization by compatible solutes. Effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur J Biochem 270:4606–4614PubMedCrossRefGoogle Scholar
  53. Lamosa P, Gonçalves LG, Rodrigues MV, Martins LO, Raven ND, Santos H (2006) Occurrence of 1-glyceryl-1-myo-inosityl phosphate in hyperthermophiles. Appl Environ Microbiol 72:6169–6173PubMedCrossRefGoogle Scholar
  54. Lee VM-Y, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38PubMedCrossRefGoogle Scholar
  55. Longo CM, Wei Y, Roberts MF, Miller SJ (2009) Asymmetric syntheses of L, L- and L, D-di-myo-inositol-1, 1′-phosphate and their behavior as stabilizers of enzyme activity at extreme temperatures. Angew Chem Int Ed Engl 48:4158–4161PubMedCrossRefGoogle Scholar
  56. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in Archaea. Appl Environ Microbiol 65:1815–1825PubMedGoogle Scholar
  57. Martins LO, Santos H (1995) Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosos in response to salinity and temperature. Appl Environ Microbiol 61:3299–3303PubMedGoogle Scholar
  58. Martins LO, Carreto LS, da Costa MS, Santos H (1996) New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J Bacteriol 178:5644–5651PubMedGoogle Scholar
  59. Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902PubMedGoogle Scholar
  60. Martins LO, Empadinhas N, Marugg JD, Miguel C, Ferreira C, da Costa MS, Santos H (1999) Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus: biochemical and genetic characterization of a mannosylglycerate synthase. J Biol Chem 274:35407–35414PubMedCrossRefGoogle Scholar
  61. Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736PubMedCrossRefGoogle Scholar
  62. Neelon K, Wang Y, Stec B, Roberts MF (2005) Probing the mechanism of the Archaeoglobus fulgidus inositol-1-phosphate synthase. J Biol Chem 280:11475–11482PubMedCrossRefGoogle Scholar
  63. Neves C, da Costa MS, Santos H (2005) Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order Thermococcales. Appl Environ Microbiol 71:8091–8098PubMedCrossRefGoogle Scholar
  64. Nunes OC, Manaia CM, da Costa MS, Santos H (1995) Compatible solutes in the thermophilic bacteria Rhodothermus marinus and “Thermus thermophilus”. Appl Environ Microbiol 61:2351–2357PubMedGoogle Scholar
  65. Pais TM, Lamosa P, Garcia-Moreno B, Turner DL, Santos H (2009) Relationship between protein stabilization and protein rigidification induced by mannosylglycerate. J Mol Biol 394:237–250PubMedCrossRefGoogle Scholar
  66. Ramos A, Raven NDH, Sharp RJ, Bartolucci S, Rossi M, Cannio R, Lebbink J, van der Oost J, de Vos WM, Santos H (1997) Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl Environ Microbiol 63:4020–4025PubMedGoogle Scholar
  67. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1:5PubMedCrossRefGoogle Scholar
  68. Robertson DE, Lesage S, Roberts MF (1989) Beta-aminoglutaric acid is a major soluble component of Methanococcus thermolithotrophicus. Biochim Biophys Acta 992:320–326PubMedCrossRefGoogle Scholar
  69. Robertson DE, Roberts MF, Belay N, Stetter KO, Boone DR (1990) Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl Environ Microbiol 56:1504–1508PubMedGoogle Scholar
  70. Robertson DE, Lai MC, Gunsalus RP, Roberts MF (1992a) Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus strain FDF1. Appl Environ Microbiol 58:2438–2443PubMedGoogle Scholar
  71. Robertson DE, Noll D, Roberts MF (1992b) Free amino acid dynamics in marine methanogens: beta-Amino acids as compatible solutes. J Biol Chem 267:14893–14901PubMedGoogle Scholar
  72. Rodionov DA, Kurnasov OV, Stec B, Wang Y, Roberts MF, Osterman AL (2007) Genomic identification and in vitro reconstitution of a complete biosynthetic pathway for the osmolyte di-myo-inositol-phosphate. Proc Natl Acad Sci USA 104:4279–4284PubMedCrossRefGoogle Scholar
  73. Rodrigues MV, Borges N, Henriques M, Lamosa P, Ventura R, Fernandes C, Empadinhas N, Maycock C, da Costa MS, Santos H (2007) Bifunctional CTP: inositol-1-phosphate cytidylyltransferase/CDP-inositol:inositol-1-phosphate transferase, the key enzyme for di-myo-inositol-phosphate synthesis in several (hyper)thermophiles. J Bacteriol 189:5405–5412PubMedCrossRefGoogle Scholar
  74. Rodrigues MV, Borges N, Almeida CP, Lamosa P, Santos H (2009) A unique β-1, 2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J Bacteriol 191:6105–6115PubMedCrossRefGoogle Scholar
  75. Sackett DL (1997) Natural osmolyte trimethylamine N-oxide stimulates tubulin polymerization and reverses urea inhibition. Am J Physiol 273:R669–R676PubMedGoogle Scholar
  76. Sá-Moura B, Albuquerque L, Empadinhas N, da Costa MS, Pereira PJ, Macedo-Ribeiro S (2008) Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus. Acta Crystallogr F Struct Biol Cryst Commun 64:760–763CrossRefGoogle Scholar
  77. Sampaio MM (2005) Engineering Escherichia coli for the synthesis of mannosylglycerate, a solute widely distributed in (hyper)thermophiles. PhD thesis, Instituto de Tecnologia Química e Biológica, PortugalGoogle Scholar
  78. Santos H, da Costa MS (2001) Organic solutes from thermophiles and hyperthermophiles. Meth Enzymol 334:302–315PubMedCrossRefGoogle Scholar
  79. Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509PubMedCrossRefGoogle Scholar
  80. Santos H, Lamosa P, Borges N (2006) Characterization of organic compatible solutes of thermophilic microorganisms. In: Oren A, Rainey F (eds) Methods in microbiology: extremophiles. Elsevier, Amsterdam, pp 171–197Google Scholar
  81. Santos H, Lamosa P, Faria TQ, Borges N, Neves C (2007a) The physiological role, biosynthesis and mode of action of compatible solutes from (hyper)thermophiles. In: Gerday C, Glandorff N (eds) Physiology and biochemistry of extremophiles. ASM, Washington, pp 86–104Google Scholar
  82. Santos H, Lamosa P, Faria TQ, Pais TM, de la Paz ML, Serrano L (2007b) Compatible solutes of (hyper)thermophiles and their role in protein stabilization. In: Antranikian G, Driesen A, Robb F (eds) Thermophiles. CRC Taylor and Francis, Boca Raton, pp 9–24Google Scholar
  83. Sato T, Fukui T, Atomi H, Imanaka T (2005) Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 71:3889–3899PubMedCrossRefGoogle Scholar
  84. Schiefner A, Holtmann G, Diederichs K, Welte W, Bremer E (2004) Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 279:48270–48281PubMedCrossRefGoogle Scholar
  85. Scholz S, Wolff S, Hensel R (1998) The biosynthesis pathway of di-myo-inositol-1, 1′-phosphate in Pyrococcus woesei. FEMS Microbiol Lett 168:37–42Google Scholar
  86. Shima S, Hérault DA, Berkessel A, Thauer RK (1998) Activation and thermostabilization effects of cyclic 2, 3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri. Arch Microbiol 170:469–472PubMedCrossRefGoogle Scholar
  87. Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172PubMedCrossRefGoogle Scholar
  88. Skovronsky DM, Lee VM-Y, Trojanowski JQ (2006) Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic impplications. Annu Rev Pathol Mech Dis 1:151–170CrossRefGoogle Scholar
  89. Stec B, Yang H, Johnson KA, Chen L, Roberts MF (2000) MJ0109 is an enzyme that is both an inositol monophosphatase and the “missing” Archaeal fructose-1, 6-bisphosphatase. Nat Struct Biol 7:1046–1050PubMedCrossRefGoogle Scholar
  90. Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103:13997–14002PubMedCrossRefGoogle Scholar
  91. Tadeo X, Castaño D, Millet O (2007) Anion modulation of the 1H/2H exchange rates in backbone amide protons monitored by NMR spectroscopy. Protein Sci 16:2733–2740PubMedCrossRefGoogle Scholar
  92. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  93. Tolman CJ, Kanodia S, Roberts MF, Daniels L (1986) 31P-NMR spectra of methanogens: 2, 3-cyclopyrophosphoglycerate is detectable only in methanobacteria strains. Biochim Biophys Acta 886:345–352PubMedCrossRefGoogle Scholar
  94. Treberg JR, Speers-Roesch B, Piermarini PM, Ip YK, Ballantyne JS, Driedzic WR (2006) The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species. J Exp Biol 209:860–870PubMedCrossRefGoogle Scholar
  95. Wang A, Robertson AD, Bolen DW (1995) Effects of a naturally occurring compatible osmolyte on the internal dynamics of ribonuclease A. Biochemistry 34:15096–15104PubMedCrossRefGoogle Scholar
  96. Xavier KB, Martins LO, Peist R, Kossmann M, Boos W, Santos H (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. J Bacteriol 178:4773–4777PubMedGoogle Scholar
  97. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830PubMedCrossRefGoogle Scholar
  98. Yancey PH, Somero GN (1979) Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J 183:317–323PubMedGoogle Scholar
  99. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar
  100. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rossello-Mora R (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Helena Santos
    • 1
  • Pedro Lamosa
    • 1
  • Nuno Borges
    • 1
  • Luís G. Gonçalves
    • 1
  • Tiago Pais
    • 1
  • Marta V. Rodrigues
    • 1
  1. 1.Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal

Personalised recommendations