Lignocellulose Converting Enzymes from Thermophiles


Due to the limitation of fossil resources, increasing CO2emission, and high fuel demands, the efficient utilization of renewable resources will play a crucial role in the future. Biomass derived from plants is considered to be a suitable resource for the production of energy carriers, e.g., ethanol, methane, hydrogen as well as high value products such as fine chemicals, building blocks, pharmaceuticals, and biopolymers (Biorefinery). Accordingly, the industrial (white) biotechnology with its current world market of more than 90 billion dollars will have a great impact on our life. The bottle neck in this technology is the development of robust enzymes that are able to convert the complex plant material to fermentable products such as glucose and xylose. Microorganisms that live at elevated temperatures are suitable candidates for the production of thermoactive biopolymer degrading enzymes. In most cases enzymes of thermophiles are superior to the traditional catalysts,...


Thermophilic Bacterium Glycosyl Hydrolase Family Clostridium Thermocellum Genus Clostridium Sulfolobus Solfataricus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adelsberger H, Hertel C, Glawischnig E, Zverlov VV, Schwarz WH (2004) Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: reconstitution of the in vivo system from recombinant enzymes. Microbiology 150:2257–2266PubMedCrossRefGoogle Scholar
  2. Ahsan M, Matsumoto M, Karita S, Kimura T, Sakka K, Ohmiya K (1997) Purification and characterization of the family J catalytic domain derived from the Clostridium thermocellum endoglucanase CelJ. Biosci Biotechnol Biochem 61:427–431PubMedCrossRefGoogle Scholar
  3. Ait N, Creuzet N, Cattaneo J (1979) Characterization and purification of thermostable beta-glucosidase from Clostridium thermocellum. Biochem Biophys Res Commun 90:537–546PubMedCrossRefGoogle Scholar
  4. Ali MK, Fukumura M, Sakano K, Karita S, Kimura T, Sakka K, Ohmiya K (1999) Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci Biotechnol Biochem 63:1596–1604PubMedCrossRefGoogle Scholar
  5. Ando S, Ishida H, Kosugi Y, Ishikawa K (2002) Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl Environ Microbiol 68:430–433PubMedCrossRefGoogle Scholar
  6. Andrade CM, Aguiar WB, Antranikian G (2001) Physiological aspects involved in production of xylanolytic enzymes by deep-sea hyperthermophilic archaeon Pyrodictium abyssi. Appl Biochem Biotechnol 91–93:655–669PubMedCrossRefGoogle Scholar
  7. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262PubMedGoogle Scholar
  8. Arai T, Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K (2001) Sequence of celQ and properties of celQ, a component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol 57:660–666PubMedCrossRefGoogle Scholar
  9. Bauer MW, Bylina EJ, Swanson RV, Kelly RM (1996) Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J Biol Chem 271:23749–23755PubMedCrossRefGoogle Scholar
  10. Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM (1999) An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1, 4 bonds in mixed-linkage (1–>3), (1–>4)-beta-D-glucans and cellulose. J Bacteriol 181:284–290PubMedGoogle Scholar
  11. Beguin P, Cornet P, Millet J (1983) Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum. Biochimie 65:495–500PubMedCrossRefGoogle Scholar
  12. Béki E, Nagy I, Vanderleyden J, Jäger S, Kiss L, Fülöp L, Hornok L, Kukolya J (2003) Cloning and heterologous expression of a beta-D-mannosidase (EC gene from Thermobifida fusca TM51. Appl Environ Microbiol 69:1944–1952PubMedCrossRefGoogle Scholar
  13. Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64:4774–4781PubMedGoogle Scholar
  14. Bravman T, Zolotnitsky G, Shulami S, Belakhov V, Solomon D, Baasov T, Shoham G, Shoham Y (2001) Stereochemistry of family 52 glycosyl hydrolases: a beta-xylosidase from Bacillus stearothermophilus T-6 is a retaining enzyme. FEBS Lett 495:39–43PubMedCrossRefGoogle Scholar
  15. Brett CT (2000) Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. Int Rev Cytol 199:161–199PubMedCrossRefGoogle Scholar
  16. Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J (1997) Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 63:3902–3910PubMedGoogle Scholar
  17. Bronnenmeier K, Staudenbauer WL (1988) Purification and properties of an extracellular beta-glucosidase from the cellulolytic thermophile Clostridium stercorarium. Appl Microbiol Biotechnol 28:380–386CrossRefGoogle Scholar
  18. Bronnenmeier K, Staudenbauer WL (1990) Cellulose hydrolysis by a highly thermostable endo-1, 4-beta-glucanase (Avicelase I) from Clostridium stercorarium. Enzyme Microb Technol 12:431–436CrossRefGoogle Scholar
  19. Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL (1995) Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol 61:1399–1407PubMedGoogle Scholar
  20. Bronnenmeier K, Kundt K, Riedel K, Schwarz WH, Staudenbauer WL (1997) Structure of the Clostridium stercorarium gene celY encoding the exo-1, 4-beta-glucanase Avicelase II. Microbiology 143(Pt 3):891–898PubMedCrossRefGoogle Scholar
  21. Brouns SJ, Smits N, Wu H, Snijders AP, Wright PC, de Vos WM, van der Oost J (2006) Identification of a novel alpha-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 188:2392–2399PubMedCrossRefGoogle Scholar
  22. Canakci S, Belduz AO, Saha BC, Yasar A, Ayaz FA, Yayli N (2007) Purification and characterization of a highly thermostable alpha-L-Arabinofuranosidase from Geobacillus caldoxylolyticus TK4. Appl Microbiol Biotechnol 75:813–820PubMedCrossRefGoogle Scholar
  23. Cann IK, Kocherginskaya S, King MR, White BA, Mackie RI (1999) Molecular cloning, sequencing, and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum. J Bacteriol 181:1643–1651PubMedGoogle Scholar
  24. Cannio R, Di Prizito N, Rossi M, Morana A (2004) A xylan-degrading strain of Sulfolobus solfataricus: isolation and characterization of the xylanase activity. Extremophiles 8:117–124PubMedCrossRefGoogle Scholar
  25. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–238PubMedCrossRefGoogle Scholar
  26. Chauvaux S, Beguin P, Aubert JP, Bhat KM, Gow LA, Wood TM, Bairoch A (1990) Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochem J 265:261–265PubMedGoogle Scholar
  27. Chhabra SR, Kelly RM (2002) Biochemical characterization of Thermotoga maritima endoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Lett 531:375–380PubMedCrossRefGoogle Scholar
  28. Chhabra SR, Shockley KR, Ward DE, Kelly RM (2002) Regulation of endo-acting glycosyl hydrolases in the hyperthermophilic bacterium Thermotoga maritima grown on glucan- and mannan-based polysaccharides. Appl Environ Microbiol 68:545–554PubMedCrossRefGoogle Scholar
  29. Chi YI, Martinez-Cruz LA, Jancarik J, Swanson RV, Robertson DE et al (1999) Crystal structure of the beta-glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability. FEBS Lett 445:375–383PubMedCrossRefGoogle Scholar
  30. Choi ID, Kim HY, Choi YJ (2000) Gene cloning and characterization of alpha-glucuronidase of Bacillus stearothermophilus no. 236. Biosci Biotechnol Biochem 64:2530–2537PubMedCrossRefGoogle Scholar
  31. Choi JJ, Oh EJ, Lee YJ, Suh DS, Lee JH, Lee SW, Shin HT, Kwon ST (2003) Enhanced expression of the gene for beta-glycosidase of Thermus caldophilus GK24 and synthesis of galacto-oligosaccharides by the enzyme. Biotechnol Appl Biochem 38:131–136PubMedCrossRefGoogle Scholar
  32. Connerton I, Cummings N, Harris GW, Debeire P, Breton C (1999) A single domain thermophilic xylanase can bind insoluble xylan: evidence for surface aromatic clusters. Biochim Biophys Acta 1433:110–121PubMedCrossRefGoogle Scholar
  33. Correia MA, Prates JA, Brás J, Fontes CM, Newman JA, Lewis RJ, Gilbert HJ, Flint JE (2008) Crystal structure of a cellulosomal family 3 carbohydrate esterase from Clostridium thermocellum provides insights into the mechanism of substrate recognition. J Mol Biol 379:64–72PubMedCrossRefGoogle Scholar
  34. Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, Shoham Y (2005) Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. J Mol Biol 353:838–846PubMedCrossRefGoogle Scholar
  35. Dai Z, Hooker BS, Anderson DB, Thomas SR (2000) Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res 9:43–54PubMedCrossRefGoogle Scholar
  36. Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ (2000) Genetic and biochemical characterization of a highly thermostable alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl Environ Microbiol 66:1734–1736PubMedCrossRefGoogle Scholar
  37. Dion M, Nisole A, Spangenberg P, André C, Glottin-Fleury A, Mattes R, Tellier C, Rabiller C (2001) Modulation of the regioselectivity of a Bacillus alpha-galactosidase by directed evolution. Glycoconj J 18:215–223PubMedCrossRefGoogle Scholar
  38. Dwivedi PP, Gibbs MD, Saul DJ, Bergquist PL (1996) Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol 45:86–93PubMedCrossRefGoogle Scholar
  39. Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270:3593–3602PubMedCrossRefGoogle Scholar
  40. Eckert K, Zielinski F, Lo Leggio L, Schneider E (2002) Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Appl Microbiol Biotechnol 60:428–436PubMedCrossRefGoogle Scholar
  41. Ethier N, Talbot G, Sygusch J (1998) Gene cloning, DNA sequencing, and expression of thermostable beta-mannanase from Bacillus stearothermophilus. Appl Environ Microbiol 64:4428–4432PubMedGoogle Scholar
  42. Fontes CM, Hazlewood GP, Morag E, Hall J, Hirst BH, Gilbert HJ (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J 307(Pt 1):151–158PubMedGoogle Scholar
  43. Fridjonsson O, Mattes R (2001) Production of recombinant alpha-galactosidases in Thermus thermophilus. Appl Environ Microbiol 67:4192–4198PubMedCrossRefGoogle Scholar
  44. Fridjonsson O, Watzlawick H, Gehweiler A, Mattes R (1999a) Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization. FEMS Microbiol Lett 176:147–153PubMedGoogle Scholar
  45. Fridjonsson O, Watzlawick H, Gehweiler A, Rohrhirsch T, Mattes R (1999b) Cloning of the gene encoding a novel thermostable alpha-galactosidase from Thermus brockianus ITI360. Appl Environ Microbiol 65:3955–3963PubMedGoogle Scholar
  46. Fridjonsson O, Watzlawick H, Mattes R (2000) The structure of the alpha-galactosidase gene loci in Thermus brockianus ITI360 and Thermus thermophilus TH125. Extremophiles 4:23–33PubMedCrossRefGoogle Scholar
  47. Fukumura M, Sakka K, Shimada K, Ohmiya K (1995) Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci Biotechnol Biochem 59:40–46PubMedCrossRefGoogle Scholar
  48. Gabelsberger J, Liebl W, Schleifer KH (1993) Purification and properties of recombinant β-glucosidase of the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol 40:44–52CrossRefGoogle Scholar
  49. Ghangas GS, Wilson DB (1988) Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans: affinity purification and functional domains of the cloned gene product. Appl Environ Microbiol 54:2521–2526PubMedGoogle Scholar
  50. Gibbs MD, Reeves RA, Bergquist PL (1995) Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl Environ Microbiol 61:4403–4408PubMedGoogle Scholar
  51. Gibbs MD, Elinder AU, Reeves RA, Bergquist PL (1996) Sequencing, cloning and expression of a beta-1, 4-mannanase gene, manA, from the extremely thermophilic anaerobic bacterium, Caldicellulosiruptor Rt8B.4. FEMS Microbiol Lett 141:37–43PubMedGoogle Scholar
  52. Gibbs MD, Reeves RA, Sunna A, Bergquist PL (1999) Sequencing and expression of a beta-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr Microbiol 39:351–357PubMedCrossRefGoogle Scholar
  53. Gilead S, Shoham Y (1995) Purification and characterization of alpha-L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 61:170–174PubMedGoogle Scholar
  54. Grepinet O, Chebrou MC, Beguin P (1988) Purification of Clostridium thermocellum xylanase Z expressed in Escherichia coli and identification of the corresponding product in the culture medium of C. thermocellum. J Bacteriol 170:4576–4581PubMedGoogle Scholar
  55. Hall J, Hazlewood GP, Barker PJ, Gilbert HJ (1988) Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69:29–38PubMedCrossRefGoogle Scholar
  56. Halldórsdóttir S, Thórólfsdóttir ET, Spilliaert R, Johansson M, Thorbjarnardóttir SH, Palsdottir A, Hreggvidsson GO, Kristjánsson JK, Holst O, Eggertsson G (1998) Cloning, sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosyl hydrolase family 12. Appl Microbiol Biotechnol 49:277–284PubMedCrossRefGoogle Scholar
  57. Halstead JR, Vercoe PE, Gilbert HJ, Davidson K, Hazlewood GP (1999) A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology 145(Pt 11):3101–3108PubMedGoogle Scholar
  58. Hayashi H, Takagi KI, Fukumura M, Kimura T, Karita S, Sakka K, Ohmiya K (1997) Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J Bacteriol 179:4246–4253PubMedGoogle Scholar
  59. Hayashi H, Takehara M, Hattori T, Kimura T, Karita S, Sakka K, Ohmiya K (1999) Nucleotide sequences of two contiguous and highly homologous xylanase genes xynA and xynB and characterization of XynA from Clostridium thermocellum. Appl Microbiol Biotechnol 51:348–357PubMedCrossRefGoogle Scholar
  60. Hazlewood GP, Gilbert HJ (1998) Structure and function analysis of Pseudomonas plant cell wall hydrolases. Biochem Soc Trans 26:185–190PubMedGoogle Scholar
  61. Hazlewood GP, Davidson K, Laurie JI, Huskisson NS, Gilbert HJ (1993) Gene sequence and properties of CelI, a family E endoglucanase from Clostridium thermocellum. J Gen Microbiol 139:307–316PubMedGoogle Scholar
  62. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316PubMedGoogle Scholar
  63. Henrissat B, Coutinho PM (2001) Classification of glycoside hydrolases and glycosyltransferases from hyperthermophiles. Methods Enzymol 330:183–201PubMedCrossRefGoogle Scholar
  64. Henrissat B, Davies GJ (2000) Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol 124:1515–1519PubMedCrossRefGoogle Scholar
  65. Hilden L, Johansson G (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 26:1683–1693PubMedCrossRefGoogle Scholar
  66. Hilge M, Gloor SM, Rypniewski W, Sauer O, Heightman TD, Zimmermann W, Winterhalter K, Piontek K (1998) High-resolution native and complex structures of thermostable beta-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure 6(11):1433–1444PubMedCrossRefGoogle Scholar
  67. Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-beta-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588PubMedCrossRefGoogle Scholar
  68. Irwin DC, Spezio M, Walker LP, Wilson DB (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotechnol Bioeng 42:1002–1013PubMedCrossRefGoogle Scholar
  69. Irwin D, Jung ED, Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–770PubMedGoogle Scholar
  70. Irwin DC, Zhang S, Wilson DB (2000) Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur J Biochem 267:4988–4997PubMedCrossRefGoogle Scholar
  71. Ishiguro M, Kaneko S, Kuno A, Koyama Y, Yoshida S, Park GG, Sakakibara Y, Kusakabe I, Kobayashi H (2001) Purification and characterization of the recombinant Thermus sp. strain T2 alpha-galactosidase expressed in Escherichia coli. Appl Environ Microbiol 67:1601–1606PubMedCrossRefGoogle Scholar
  72. Jung ED, Lao G, Irwin D, Barr BK, Benjamin A, Wilson DB (1993) DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59:3032–3043PubMedGoogle Scholar
  73. Jung KH, Lee KM, Kim H, Yoon KH, Park SH, Pack MY (1998) Cloning and expression of a Clostridium thermocellum xylanase gene in Escherichia coli. Biochem Mol Biol Int 44:283–292PubMedGoogle Scholar
  74. Kaper T, van Heusden HH, van Loo B, Vasella A, van der Oost J, de Vos WM (2002) Substrate specificity engineering of beta-mannosidase and beta-glucosidase from Pyrococcus by exchange of unique active site residues. Biochemistry 41:4147–4155PubMedCrossRefGoogle Scholar
  75. Karlsson EN, Dahlberg L, Torto N, Gorton L, Holst O (1998) Enzymatic specificity and hydrolysis pattern of the catalytic domain of the xylanase Xynl from Rhodothermus marinus. J Biotechnol 60:23–35PubMedCrossRefGoogle Scholar
  76. Kataeva I, Li XL, Chen H, Choi SK, Ljungdahl LG (1999) Cloning and sequence analysis of a new cellulase gene encoding CelK, a major cellulosome component of Clostridium thermocellum: evidence for gene duplication and recombination. J Bacteriol 181:5288–5295PubMedGoogle Scholar
  77. Kengen SW, Luesink EJ, Stams AJ, Zehnder AJ (1993) Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213:305–312PubMedCrossRefGoogle Scholar
  78. Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730PubMedGoogle Scholar
  79. Kim JO, Park SR, Lim WJ, Ryu SK, Kim MK, An CL, Cho SJ, Park YW, Kim JH, Yun HD (2000) Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Biochem Biophys Res Commun 279:420–426PubMedCrossRefGoogle Scholar
  80. Kim JH, Irwin D, Wilson DB (2004) Purification and characterization of Thermobifida fusca xylanase 10B. Can J Microbiol 50:835–843PubMedCrossRefGoogle Scholar
  81. Kim D, Park BH, Jung B-W, Kim M-K, Hong SI, Lee DS (2006) Identification and molecular modeling of a family 5 endocellulase from Thermus caldophilus GK24, a cellulolytic strain of Thermus thermophilus. Int J Mol Sci 7:571–589CrossRefGoogle Scholar
  82. King MR, Yernool DA, Eveleigh DE, Chassy BM (1998) Thermostable alpha-galactosidase from Thermotoga neapolitana: cloning, sequencing and expression. FEMS Microbiol Lett 163:37–42PubMedGoogle Scholar
  83. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391PubMedCrossRefGoogle Scholar
  84. Kurokawa J, Hemjinda E, Arai T, Karita S, Kimura T, Sakka K, Ohmiya K (2001) Sequence of the Clostridium thermocellum mannanase gene man26B and characterization of the translated product. Biosci Biotechnol Biochem 65:548–554PubMedCrossRefGoogle Scholar
  85. Kurokawa J, Hemjinda E, Arai T, Kimura T, Sakka K, Ohmiya K (2002) Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module. Appl Microbiol Biotechnol 59:455–461PubMedCrossRefGoogle Scholar
  86. Lee YE, Zeikus JG (1993) Genetic organization, sequence and biochemical characterization of recombinant beta-xylosidase from Thermoanaerobacterium saccharolyticum strain B6A-RI. J Gen Microbiol 139(Pt 6):1235–1243PubMedGoogle Scholar
  87. Lee YE, Lowe SE, Zeikus JG (1993) Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl Environ Microbiol 59:3134–3137PubMedGoogle Scholar
  88. Lemaire M, Beguin P (1993) Nucleotide sequence of the celG gene of Clostridium thermocellum and characterization of its product, endoglucanase CelG. J Bacteriol 175:3353–3360PubMedGoogle Scholar
  89. Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142(Pt 9):2533–2542PubMedCrossRefGoogle Scholar
  90. Liebl W, Wagner B, Schellhase J (1998) Properties of an alpha-galactosidase, and structure of its gene galA, within an alpha-and beta-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Syst Appl Microbiol 21:1–11PubMedCrossRefGoogle Scholar
  91. Lima AO, Davis DF, Swiatek G, McCarthy JK, Yernool D, Pizzirani-Kleiner AA, Eveleigh DE (2009) Evaluation of GFP tag as a screening reporter in directed evolution of a hyperthermophilic beta-glucosidase. Mol Biotechnol 42:205–215PubMedCrossRefGoogle Scholar
  92. Limauro D, Cannio R, Fiorentino G, Rossi M, Bartolucci S (2001) Identification and molecular characterization of an endoglucanase gene, celS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:213–219PubMedCrossRefGoogle Scholar
  93. Liu SY, Gherardini FC, Matuschek M, Bahl H, Wiegel J (1996) Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J Bacteriol 178:1539–1547PubMedGoogle Scholar
  94. Lorenz WW, Wiegel J (1997) Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity. J Bacteriol 179:5436–5441PubMedGoogle Scholar
  95. Love DR, Fisher R, Bergquist PL (1988) Sequence structure and expression of a cloned beta-glucosidase gene from an extreme thermophile. Mol Gen Genet 213:84–92PubMedCrossRefGoogle Scholar
  96. Lüthi E, Jasmat NB, Bergquist PL (1990) Xylanase from the extremely thermophilic bacterium “Caldocellum saccharolyticum”: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl Environ Microbiol 56:2677–2683PubMedGoogle Scholar
  97. Lüthi E, Jasmat NB, Grayling RA, Love DR, Bergquist PL (1991) Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for a beta-mannanase from the extremely thermophilic bacterium “Caldocellum saccharolyticum”. Appl Environ Microbiol 57:694–700PubMedGoogle Scholar
  98. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCrossRefGoogle Scholar
  99. Mardanov AV, Ravin NV, Svetlitchnyi VA, Beletsky AV, Miroshnichenko ML, Bonch-Osmolovskaya EA, Skryabin KG (2009) Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis. Appl Environ Microbiol 75:4580–4588PubMedCrossRefGoogle Scholar
  100. Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y, Honda K (2000) Novel substrate specificity of a membrane-bound beta-glycosidase from the hyperthermophilic archaeon Pyrococcus horikoshii. FEBS Lett 467:195–200PubMedCrossRefGoogle Scholar
  101. Maurelli L, Giovane A, Esposito A, Moracci M, Fiume I, Rossi M, Morana A (2008) Evidence that the xylanase activity from Sulfolobus solfataricus Oalpha is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12:689–700PubMedCrossRefGoogle Scholar
  102. Miyazaki K (2005) Hyperthermophilic alpha-L: arabinofuranosidase from Thermotoga maritima MSB8: molecular cloning, gene expression, and characterization of the recombinant protein. Extremophiles 9:399–406PubMedCrossRefGoogle Scholar
  103. Montanier C, Money VA, Pires VM, Flint JE, Pinheiro BA, Goyal A, Prates JA, Izumi A, Stålbrand H, Morland C, Cartmell A, Kolenova K, Topakas E, Dodson EJ, Bolam DN, Davies GJ, Fontes CM, Gilbert HJ (2009) The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions. PLoS Biol 7:e71PubMedCrossRefGoogle Scholar
  104. Moracci M, Nucci R, Febbraio F, Vaccaro C, Vespa N et al (1995) Expression and extensive characterization of a beta-glycosidase from the extreme thermoacidophilic archaeon Sulfolobus solfataricus in Escherichia coli: authenticity of the recombinant enzyme. Enzyme Microb Technol 17:992–997PubMedCrossRefGoogle Scholar
  105. Morana A, Paris O, Maurelli L, Rossi M, Cannio R (2007) Gene cloning and expression in Escherichia coli of a bi-functional beta-D-xylosidase/alpha-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11:123–132PubMedCrossRefGoogle Scholar
  106. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178PubMedCrossRefGoogle Scholar
  107. Morris DD, Gibbs MD, Chin CW, Koh MH, Wong KK, Allison RW, Nelson PJ, Bergquist PL (1998) Cloning of the xynB gene from Dictyoglomus thermophilum Rt46B.1 and action of the gene product on kraft pulp. Appl Environ Microbiol 64:1759–1765PubMedGoogle Scholar
  108. Morris DD, Gibbs MD, Ford M, Thomas J, Bergquist PL (1999) Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3:103–111PubMedCrossRefGoogle Scholar
  109. Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672PubMedGoogle Scholar
  110. Navarro A, Chebrou MC, Beguin P, Aubert JP (1991) Nucleotide sequence of the cellulase gene celF of Clostridium thermocellum. Res Microbiol 142:927–936PubMedCrossRefGoogle Scholar
  111. Ng IS, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho TH, Tong CG (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435PubMedCrossRefGoogle Scholar
  112. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207CrossRefGoogle Scholar
  113. Paës G, O'Donohue MJ (2006) Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J Biotechnol 125:338–350PubMedCrossRefGoogle Scholar
  114. Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ, Park JS, Cha J (2005) Substrate specificity and transglycosylation catalyzed by a thermostable beta-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl Microbiol Biotechnol 69:411–422PubMedCrossRefGoogle Scholar
  115. Park NY, Cha J, Kim DO, Park CS (2007) Enzymatic characterization and substrate specificity of thermostable beta-glycosidase from hyperthermophilic archaea, Sulfolobus shibatae, expressed in E. coli. J Microbiol Biotechnol 17:454–460PubMedGoogle Scholar
  116. Park AR, Kim HJ, Lee JK, Oh DK (2010) Hydrolysis and Transglycosylation activity of a thermostable recombinant beta-glycosidase from Sulfolobus acidocaldarius. Appl Biochem Biotechnol 160(8):2236–2247Google Scholar
  117. Parker KN, Chhabra SR, Lam D, Callen W, Duffaud GD, Snead MA, Short JM, Mathur EJ, Kelly RM (2001) Galactomannanases Man2 and Man5 from Thermotoga species: growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnol Bioeng 75:322–333PubMedCrossRefGoogle Scholar
  118. Peters D (2007) Raw materials. Adv Biochem Eng Biotechnol 105:1–30PubMedGoogle Scholar
  119. Pétré D, Millet J, Longin R, Béguin P, Girard H, Aubert JP (1986) Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli. Biochimie 68:687–695PubMedCrossRefGoogle Scholar
  120. Politz O, Krah M, Thomsen KK, Borriss R (2000) A highly thermostable endo-(1, 4)-beta-mannanase from the marine bacterium Rhodothermus marinus. Appl Microbiol Biotechnol 53:715–721PubMedCrossRefGoogle Scholar
  121. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591PubMedCrossRefGoogle Scholar
  122. Posta K, Beki E, Wilson DB, Kukolya J, Hornok L (2004) Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca. J Basic Microbiol 44:383–399PubMedCrossRefGoogle Scholar
  123. Reeves RA, Gibbs MD, Morris DD, Griffiths KR, Saul DJ, Bergquist PL (2000) Sequencing and expression of additional xylanase genes from the hyperthermophile Thermotoga maritima FjSS3B.1. Appl Environ Microbiol 66:1532–1537PubMedCrossRefGoogle Scholar
  124. Romaniec MP, Huskisson N, Barker P, Demain AL (1993) Purification and properties of the Clostridium thermocellum bglB gene product expressed in Escherichia coli. Enzyme Microb Technol 15:393–400PubMedCrossRefGoogle Scholar
  125. Ruile P, Winterhalter C, Liebl W (1997) Isolation and analysis of a gene encoding alpha-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan. Mol Microbiol 23:267–279PubMedCrossRefGoogle Scholar
  126. Ruttersmith LD, Daniel RM (1991) Thermostable cellobiohydrolase from the thermophilic eubacterium Thermotoga sp. strain FjSS3-B.1. Purification and properties. Pt 3 277:887–890Google Scholar
  127. Saha BC (2003) Purification and properties of an extracellular beta-xylosidase from a newly isolated Fusarium proliferatum. Bioresour Technol 90:33–38PubMedCrossRefGoogle Scholar
  128. Sakka K, Yoshikawa K, Kojima Y, Karita S, Ohmiya K, Shimada K (1993) Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities, and properties of the translated product. Biosci Biotechnol Biochem 57:268–272PubMedCrossRefGoogle Scholar
  129. Sakka K, Kojima Y, Kondo T, Karita S, Shimada K, Ohmiya K (1994) Purification and characterization of xylanase A from Clostridium stercorarium F-9 and a recombinant Escherichia coli. Biosci Biotechnol Biochem 58:1496–1499PubMedCrossRefGoogle Scholar
  130. Salles BC, Cunha RB, Fontes W, Sousa MV, Filho EX (2000) Purification and characterization of a new xylanase from Acrophialophora nainiana. J Biotechnol 81:199–204PubMedCrossRefGoogle Scholar
  131. Saul DJ, Williams LC, Grayling RA, Chamley LW, Love DR, Bergquist PL (1990) celB, a gene coding for a bifunctional cellulase from the extreme thermophile “Caldocellum saccharolyticum”. Appl Environ Microbiol 56:3117–3124PubMedGoogle Scholar
  132. Saul DJ, Williams LC, Reeves RA, Gibbs MD, Bergquist PL (1995) Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain FjSS3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp. Appl Environ Microbiol 61:4110–4113PubMedGoogle Scholar
  133. Schwarz WH, Grabnitz F, Staudenbauer WL (1986) Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli. Appl Environ Microbiol 51:1293–1299PubMedGoogle Scholar
  134. Schwarz WH, Bronnenmeier K, Krause B, Lottspeich F, Staudenbauer WL (1995) Debranching of arabinoxylan: properties of the thermoactive recombinant alpha-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl Microbiol Biotechnol 43:856–860PubMedCrossRefGoogle Scholar
  135. Shallom D, Leon M, Bravman T, Ben-David A, Zaide G, Belakhov V, Shoham G, Schomburg D, Baasov T, Shoham Y (2005) Biochemical characterization and identification of the catalytic residues of a family 43 beta-D-xylosidase from Geobacillus stearothermophilus T-6. Biochemistry 44:387–397PubMedCrossRefGoogle Scholar
  136. Shao W, Wiegel J (1992) Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853PubMedGoogle Scholar
  137. Shulami S, Gat O, Sonenshein AL, Shoham Y (1999) The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 181:3695–3704PubMedGoogle Scholar
  138. Spiridonov N, Wilson DB (2001) Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol 42:295–301PubMedGoogle Scholar
  139. Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL (2000) A gene encoding a novel multidomain beta-1, 4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66:664–670PubMedCrossRefGoogle Scholar
  140. Suresh C, Kitaoka M, Hayashi K (2003) A thermostable non-xylanolytic alpha-glucuronidase of Thermotoga maritima MSB8. Biosci Biotechnol Biochem 67:2359–2364PubMedCrossRefGoogle Scholar
  141. Suryani KT, Sakka K, Ohmiya K (2003) Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium alpha-galactosidase Aga36A in Escherichia coli. Biosci Biotechnol Biochem 67:2160–2166PubMedCrossRefGoogle Scholar
  142. Suryani KT, Sakka K, Ohmiya K (2004) Sequencing and expression of the gene encoding the Clostridium stercorarium beta-xylosidase Xyl43B in Escherichia coli. Biosci Biotechnol Biochem 68:609–614PubMedCrossRefGoogle Scholar
  143. Takase M, Horikoshi K (1988) A thermostable beta-glucosidase isolated from a bacterial species of the genus Thermus. Appl Microbiol Biotechnol 29:55–60CrossRefGoogle Scholar
  144. Talbot G, Sygusch J (1990) Purification and characterization of thermostable beta-mannanase and alpha-galactosidase from Bacillus stearothermophilus. Appl Environ Microbiol 56:3505–3510PubMedGoogle Scholar
  145. Taylor EJ, Smith NL, Turkenburg JP, D'Souza S, Gilbert HJ, Davies GJ (2006a) Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem J 395:31–37PubMedCrossRefGoogle Scholar
  146. Taylor EJ, Gloster TM, Turkenburg JP, Vincent F, Brzozowski AM, Dupont C, Shareck F, Centeno MS, Prates JA, Puchart V, Ferreira LM, Fontes CM, Biely P, Davies GJ (2006b) Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J Biol Chem 281:10968–10975PubMedCrossRefGoogle Scholar
  147. Te’o VS, Saul DJ, Bergquist PL (1995) celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum. Appl Microbiol Biotechnol 43:291–296PubMedCrossRefGoogle Scholar
  148. Uhl AM, Daniel RM (1999) The first description of an archaeal hemicellulase: the xylanase from Thermococcus zilligii strain AN1. Extremophiles 3:263–267PubMedCrossRefGoogle Scholar
  149. Velikodvorskaya TV, Volkov I, Vasilevko VT, Zverlov VV, Piruzian ES (1997) Purification and some properties of Thermotoga neapolitana thermostable xylanase B expressed in E. coli cells. Biochemistry (Mosc) 62:66–70Google Scholar
  150. Wagschal K, Heng C, Lee CC, Robertson GH, Orts WJ, Wong DW (2009) Purification and characterization of a glycoside hydrolase family 43 beta-xylosidase from Geobacillus thermoleovorans IT-08. Appl Biochem Biotechnol 155:304–313PubMedCrossRefGoogle Scholar
  151. Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815PubMedGoogle Scholar
  152. Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W (1995) Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431–444PubMedCrossRefGoogle Scholar
  153. Wright RM, Yablonsky MD, Shalita ZP, Goyal AK, Eveleigh DE (1992) Cloning, characterization, and nucleotide sequence of a gene encoding Microbispora bispora BglB, a thermostable beta-glucosidase expressed in Escherichia coli. Appl Environ Microbiol 58:3455–3465PubMedGoogle Scholar
  154. Xiangyuan H, Shuzheng Z, Shoujun Y (2001) Cloning and expression of thermostable beta-glycosidase gene from Thermus nonproteolyticus HG102 and characterization of recombinant enzyme. Appl Biochem Biotechnol 94:243–255PubMedCrossRefGoogle Scholar
  155. Zaide G, Shallom D, Shulami S, Zolotnitsky G, Golan G, Baasov T, Shoham G, Shoham Y (2001) Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6. Eur J Biochem 268:3006–3016PubMedCrossRefGoogle Scholar
  156. Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824PubMedCrossRefGoogle Scholar
  157. Zhang S, Lao G, Wilson DB (1995) Characterization of a Thermomonospora fusca exocellulase. Biochemistry 34:3386–3395PubMedCrossRefGoogle Scholar
  158. Zhang Y, Ju J, Peng H, Gao F, Zhou C, Zeng Y, Xue Y, Li Y, Henrissat B, Gao GF, Ma Y (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem 283:31551–31558PubMedCrossRefGoogle Scholar
  159. Zheng B, Yang W, Wang Y, Feng Y, Lou Z (2009) Crystallization and preliminary crystallographic analysis of thermophilic cellulase from Fervidobacterium nodosum Rt17-B1. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:219–222PubMedCrossRefGoogle Scholar
  160. Zverlov V, Piotukh K, Dakhova O, Velikodvorskaya G, Borriss R (1996) The multidomain xylanase A of the hyperthermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Appl Microbiol Biotechnol 45:245–247PubMedCrossRefGoogle Scholar
  161. Zverlov VV, Volkov IY, Velikodvorskaya TV, Schwarz WH (1997) Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable beta-glucosidase that is a laminaribiase. Microbiology 143(Pt 11):3537–3542PubMedCrossRefGoogle Scholar
  162. Zverlov V, Mahr S, Riedel K, Bronnenmeier K (1998a) Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144(Pt 2):457–465PubMedCrossRefGoogle Scholar
  163. Zverlov VV, Velikodvorskaya GV, Schwarz WH, Bronnenmeier K, Kellermann J, Staudenbauer WL (1998b) Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J Bacteriol 180:3091–3099PubMedGoogle Scholar
  164. Zverlov VV, Velikodvorskaya GA, Schwarz WH (2002) A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum: investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiology 148:247–255PubMedGoogle Scholar
  165. Zverlov VV, Velikodvorskaya GA, Schwarz WH (2003) Two new cellulosome components encoded downstream of celI in the genome of Clostridium thermocellum: the non-processive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149:515–524PubMedCrossRefGoogle Scholar
  166. Zverlov VV, Schantz N, Schwarz WH (2005a) A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1, 4-glucanase producing cellotetraose. FEMS Microbiol Lett 249:353–358PubMedCrossRefGoogle Scholar
  167. Zverlov VV, Schantz N, Schmitt-Kopplin P, Schwarz WH (2005b) Two new major subunits in the cellulosome of Clostridium thermocellum: xyloglucanase Xgh74A and endoxylanase Xyn10D. Microbiology 151:3395–3401PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Institute of Technical MicrobiologyHamburg University of TechnologyHamburgGermany

Personalised recommendations