Carbohydrate-Active Enzymes from Hyperthermophiles: Biochemistry and Applications

  • Beatrice Cobucci-Ponzano
  • Mosè Rossi
  • Marco Moracci


Carbohydrate-active enzymes (cazymes) are enzymatic activities involved in the hydrolysis, synthesis, recognition, and binding of carbohydrates, thereby contributing to the metabolism and mobilization of sugars and glycoconjugates (glycoproteins and glycolipids). Cazymes play a central role in glycobiology, a relatively new discipline, which aims to recognize the confluence of the traditional disciplines of carbohydrate chemistry and biochemistry with modern understanding of the cellular and molecular biology of glycans (Varki et al. 2008). In the centrality of glycobiology in life science, the study of cazymes is fundamental for the understanding of the biochemical and enzymatic processes at the basis of glycan mobilization, which regulate important cellular events including energy metabolism, intracellular regulatory switch, protein trafficking, signal transduction, cell–cell interaction, host–parasite interaction, and many others.

The study of cazymes is also recognized...


Glycoside Hydrolase Bovine Spongiform Encephalopathy Family GH13 CAZy Database Trehalose Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea. Curr Opin Struct Biol 18:544–550PubMedCrossRefGoogle Scholar
  2. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217PubMedCrossRefGoogle Scholar
  3. Brown SH, Kelly RM (1993) Characterization of amylolytic enzymes, having both alpha-1, 4 and alpha-1, 6 hydrolytic activity, from the thermophilic archaea pyrococcus furiosus and thermococcus litoralis. Appl Environ Microbiol 59:2614–2621PubMedGoogle Scholar
  4. Buchholz K, Seibel J (2008) Industrial carbohydrate biotransformations. Carbohydr Res 343:1966–1979PubMedCrossRefGoogle Scholar
  5. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37(Database issue):D233–D238PubMedCrossRefGoogle Scholar
  6. Cobucci-Ponzano B, Conte F, Bedini E, Corsaro MM, Parrilli M, Sulzenbacher G, Lipski A, Dal Piaz F, Lepore L, Rossi M, Moracci M (2009) beta-Glycosyl azides as substrates for alpha-glycosynthases: preparation of efficient alpha-L-fucosynthases. Chem Biol 16:1097–1108PubMedCrossRefGoogle Scholar
  7. Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM (2006) Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 30:872–905PubMedCrossRefGoogle Scholar
  8. Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588PubMedCrossRefGoogle Scholar
  9. Godfrey T (1996) Textiles. In: Godfrey E, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 361–371Google Scholar
  10. Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519PubMedCrossRefGoogle Scholar
  11. Horcajada C, Guinovart JJ, Fita I, Ferrer JC (2006) Crystal structure of an archaeal glycogen synthase: insights into oligomerization and substrate binding of eukaryotic glycogen synthases. J Biol Chem 281:2923–2931PubMedCrossRefGoogle Scholar
  12. Igura M, Maita N, Kamishikiryo J, Yamada M, Obita T, Maenaka K, Kohda D (2008) Structure-guided identification of a new catalytic motif of oligosaccharyltransferase. EMBO J 27:234–243PubMedCrossRefGoogle Scholar
  13. Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369PubMedCrossRefGoogle Scholar
  14. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555PubMedCrossRefGoogle Scholar
  15. Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522PubMedCrossRefGoogle Scholar
  16. Magidovich H, Eichler J (2009) Glycosyltransferases and oligosaccharyltransferases in Archaea: putative components of the N-glycosylation pathway in the third domain of life. FEMS Microbiol Lett 300:122–130PubMedCrossRefGoogle Scholar
  17. Maiorano AE, Piccoli RM, da Silva ES, de Andrade Rodrigues MF (2008) Microbial production of fructosyltransferases for synthesis of pre-biotics. Biotechnol Lett 30:1867–1877PubMedCrossRefGoogle Scholar
  18. Moracci M, Trincone A, Cobucci-Ponzano B, Perugino G, Ciaramella M, Rossi M (2001) Enzymatic synthesis of oligosaccharides by two glycosyl hydrolases of Sulfolobus solfataricus. Extremophiles 5:145–152PubMedCrossRefGoogle Scholar
  19. Mueller M, Takemasa R, Schwarz A, Atomi H, Nidetzky B (2009) “Short-chain” alpha-1, 4-glucan phosphorylase having a truncated N-terminal domain: functional expression and characterization of the enzyme from Sulfolobus solfataricus. Biochim Biophys Acta 1794:1709–1714PubMedCrossRefGoogle Scholar
  20. Osanjo G, Dion M, Drone J, Solleux C, Tran V, Rabiller C, Tellier C (2007) Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase. Biochemistry 46:1022–1033PubMedCrossRefGoogle Scholar
  21. Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 22:31–37PubMedCrossRefGoogle Scholar
  22. Perugino G, Cobucci-Ponzano B, Rossi M, Moracci M (2005) Recent advances in the oligosaccharide synthesis promoted by catalytically engineered glycosidases. Adv Synth Catal 347:941–950CrossRefGoogle Scholar
  23. Rashid N, Cornista J, Ezaki S, Fukui T, Atomi H, Imanaka T (2002) Characterization of an archaeal cyclodextrin glucanotransferase with a novel C-terminal domain. J Bacteriol 184:777–784PubMedCrossRefGoogle Scholar
  24. Ryu SI, Park CS, Cha J, Woo EJ, Lee SB (2005) A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun 329:429–436PubMedCrossRefGoogle Scholar
  25. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9–32PubMedCrossRefGoogle Scholar
  26. Urushibata Y, Ebisu S, Matsui I (2008) A thermostable dolichol phosphoryl mannose synthase responsible for glycoconjugate synthesis of the hyperthermophilic archaeon Pyrococcus horikoshii. Extremophiles 12:665–676PubMedCrossRefGoogle Scholar
  27. van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L (2000) Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochim Biophys Acta 1543:336–360PubMedCrossRefGoogle Scholar
  28. Vanfossen AL, Lewis DL, Nichols JD, Kelly RM (2008) Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Ann NY Acad Sci 1125:322–337PubMedCrossRefGoogle Scholar
  29. Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (2008) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, ISBN 0-87969-770-9Google Scholar
  30. Wang LX (2009) Expanding the repertoire of glycosynthases. Chem Biol 16:1026–1027PubMedCrossRefGoogle Scholar
  31. Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S (2007) Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci USA 104:5348–5353PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Beatrice Cobucci-Ponzano
    • 1
  • Mosè Rossi
    • 1
    • 2
  • Marco Moracci
    • 1
  1. 1.Institute of Protein BiochemistryConsiglio Nazionale delle RicercheNaplesItaly
  2. 2.Dipartimento di Biologia Strutturale e FunzionaleUniversità di Napoli “Federico II,” Complesso Universitario di Monte S. AngeloNaplesItaly

Personalised recommendations