History of Discovery of Hyperthermophiles

Reference work entry

Introduction: My Scientific Interests Before Woese’s Discovery of the Archaea

In my Master Thesis work in 1969 in Otto Kandler’s lab at the Botanical Institute in Munich, I studied kinetics of lactic acid isomer formation in a variety of Lactobacilli including some isolates obtained by myself. Otto Kandler told me personally how to hunt for new microbes and how to isolate and describe them.

Since Orla-Jensen (1919), the kind of lactic acid isomer formed had been taken as constant for a Lactobacillus species and, therefore served as an important taxonomic marker. However in my investigations several species (e.g., Lactobacillus curvatus) exhibited powerful changes of the isomer composition depending on the growth phase. In my following PhD work (finished in 1973) on the biochemistry of lactic acid formation in Lactobacilli, I discovered a novel lactic acid racemase in L. curvatus. In the presence of bivalent Manganese ions, it was induced by L (+) – lactate that was then converted into...


High Growth Temperature Hyperthermophilic Archaea Extreme Halophile Storage Bottle Kolbeinsey Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520PubMedCrossRefGoogle Scholar
  2. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci USA 93:9188–9193PubMedCrossRefGoogle Scholar
  3. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21PubMedCrossRefGoogle Scholar
  4. Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Canad J Microbiol 19:183–188CrossRefGoogle Scholar
  5. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulphur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  6. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkCrossRefGoogle Scholar
  7. Burggraf S, Heyder P, Eis N (1997) A privotal Archaea group. Nature 385:780PubMedCrossRefGoogle Scholar
  8. Castenholz RW (1979) Evolution and ecology of thermophilic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim, pp 373–392Google Scholar
  9. De Rosa M, Gambacorta A, Bu‘Lock JD (1975) Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. J Gen Microbiol 86:156–164PubMedGoogle Scholar
  10. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Goltsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci USA 15:8102–8107CrossRefGoogle Scholar
  11. Hafenbradl D, Keller M, Thierecke R, Stetter KO (1993) A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri. System Appl Microbiol 16:165–169CrossRefGoogle Scholar
  12. Hohn MJ, Hedlund BP, Huber H (2002) Detection of 16 S rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a broad distribution in high temperature. Syst Appl Microbiol 25:551–554PubMedCrossRefGoogle Scholar
  13. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  14. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351CrossRefGoogle Scholar
  15. Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58PubMedCrossRefGoogle Scholar
  16. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedGoogle Scholar
  17. Kurr M, Huber R, Knig H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. Nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247CrossRefGoogle Scholar
  18. Louis BG, Fitt PS (1972) Isolation and properties of highly purified Halobacterium cutirubrum deoxyribonucleic acid- dependent ribonucleic acid polymerase. Biochem J 127:69–80PubMedGoogle Scholar
  19. Orla–Jensen J (1919) The lactic acid bacteria. D. Kgl.Danske Videnskabernes Selskrabs Skrifter, Naturv. Og Mathematisk Afd., 8. Raekke, V.2, 79–192Google Scholar
  20. Paper W, Jahn U, Hohn MJ, Kronner M, Näther DJ, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of “Nanoarchaeum equitans”. Int J Syst Evol Microbiol 57:803–808PubMedCrossRefGoogle Scholar
  21. Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall M, Lykidis A, Mavrommatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) A genomic analysis of the archaeal system Ignicoccus hospitalis: Nanoarchaeum equitans. Genome Biol 9:R158, http://genombiology.com/2008/9/11/R158
  22. Randau L, Münch R, Hohn MJ, Jahn D, Söll D (2005) Nanoarchaeum equitans creates functional t-RNAs from separate genes for their 5′- and 3′- halves. Nature 433:537–541PubMedCrossRefGoogle Scholar
  23. Stetter KO, Kandler O (1973) Manganese requirement of the transcription processes in Lactobacillus curvatus. FEBS Lett 36:5–8PubMedCrossRefGoogle Scholar
  24. Stetter KO, Zillig W (1974) Transcription in Lactobacillaceae. DNA-dependent RNA polymerase from Lactobacillus curvatus. Eur J Biochem 48:527–540PubMedCrossRefGoogle Scholar
  25. Stetter KO, Zillig W, Tobien M (1978) DNA -dependent RNA polymerase from Halobacterium halobium. In: Kaplan SR, Ginzburg M (eds) Energetics and structure of halophilic microorganisms. Elsevier, North HollandGoogle Scholar
  26. Stetter KO, Winter J, Hartlieb R (1980) DNA- dependent RNA polymerase of the archaebacterium Methanobacterium thermoautotrophicum. Zbl Bakt Hyg I Abt Orig C1:201–214Google Scholar
  27. Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl Bakt Hyg I Abt Orig C2:166–178Google Scholar
  28. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260CrossRefGoogle Scholar
  29. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc- shaped sulphur reducing archaebacteria growing optimally at 105°C. System Appl Microbiol 4:535–551CrossRefGoogle Scholar
  30. Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. The bacteria, vol 8. Academic Press Inc., Orlando, pp 86–170Google Scholar
  31. Stetter KO (1992) Life at the upper temperature border. In: Tran Thanh Van J, Tran Thanh Van K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontieres, Gif-sur-Yvette, pp 195–219Google Scholar
  32. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745CrossRefGoogle Scholar
  33. Stetter KO (2005) Volcanoes, hydrothermal venting, and the origin of life. In: Marti J, Ernst GGJ (eds) Volcanoes and the environment. Cambridge University Press, New York, pp 175–206Google Scholar
  34. Sturm S, Schönefeld U, Zillig W, Janecovic D, Stetter KO (1980) Structure and function of the DNA- dependent RNA polymerase of the archaebacterium Thermoplasma acidophilum. Zbl Bakt Hyg I Abt Orig C1:12–25Google Scholar
  35. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954PubMedCrossRefGoogle Scholar
  36. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988PubMedCrossRefGoogle Scholar
  37. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedCrossRefGoogle Scholar
  38. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  39. Zeikus JG, Ben-Bassat A, Hegger PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bact 143:432–440PubMedGoogle Scholar
  40. Zillig W, Stetter KO, Janekovic D (1979) DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 96:597–604PubMedCrossRefGoogle Scholar
  41. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz J (1980) The Sulfolobus – “Caldariella” group: taxonomy on the basis of the structure of DNA- dependent RNA polymerase. Arch Microbiol 125:259–269CrossRefGoogle Scholar
  42. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl Bakt Hyg I Abt Orig C2:205–227Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of RegensburgRegensburgGermany

Personalised recommendations