Adapting to Changing Salinities: Biochemistry, Genetics, and Regulation in the Moderately Halophilic Bacterium Halobacillus halophilus


The availability of water is the most important prerequisite for life of any living cell and exposure of cells to hypersaline conditions always threatens the cells with a drastic loss of water followed by shrinkage and cell death if no counter measures are taken. To re-establish the essential turgor pressure, cells increase the water activity of their cytoplasm using one of two principal strategies: the “salt-in-cytoplasm” and the “compatible solute” strategy. The former describes the accumulation of inorganic ions, mainly K+ and Cl, in the cytoplasm, until the internal salt concentration is similar to the extracellular one. This strategy can be found in extremely halophilic Halobacteria (Archaea) and halophilic, anaerobic Haloanaerobiales (Bacteria) and Salinibacter ruber. This strategy is not covered here but the reader is referred to excellent reviews (Galinski and Trüper 1994; Ventosa et al. 1998). The vast majority of bacteria cope with increasing osmolality by...


Glutamine Synthetase Compatible Solute Glycine Betaine Glutamine Synthetase Activity External Salinity 



Work from the author’s laboratory is supported by the Deutsche Forschungsgemeinschaft.


  1. Bauduin P, Nohmie FDT, Neueder R, Kunz W, Ninham BW (2006) Hofmeister specific-ion effects on enzyme activity and buffer pH: horseradish peroxidase in citrate buffer. J Mol Liq 123:14–19CrossRefGoogle Scholar
  2. Belitsky BR, Brill J, Bremer E, Sonenshein AL (2001) Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 183:4389–4392PubMedCrossRefGoogle Scholar
  3. Bohnert HJ (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedGoogle Scholar
  4. Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558PubMedGoogle Scholar
  5. Broering JM, Bommarius AS (2005) Evaluation of Hofmeister effects on the kinetic stability of proteins. J Phys Chem B 109:20612–20619PubMedCrossRefGoogle Scholar
  6. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedGoogle Scholar
  7. Buenger J, Driller H (2004) Ectoine: an effective natural substance to prevent UVA-induced premature photoaging. Skin Pharmacol Physiol 17:232–237PubMedCrossRefGoogle Scholar
  8. Burkhardt J, Sewald X, Bauer B, Saum SH, Müller V (2009) Synthesis of glycine betaine from choline in the moderate halophilic Halobacillus halophilus: co-regulation of two divergent, polycistronic operons. Environ Microbiol Rep 1:38–43CrossRefGoogle Scholar
  9. Calderon MI, Vargas C, Rojo F, Iglesias-Guerra F, Csonka LN, Ventosa A, Nieto JJ (2004) Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T. Microbiology 150:3051–3063PubMedCrossRefGoogle Scholar
  10. Canovas D, Borges C, Vargas A, Ventosa A, Nieto TT, Santos H (1999) Role of N-γ-acetyldiaminobutyrate as an enzyme stabilizer an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol 65:3774–3779PubMedGoogle Scholar
  11. Carmel O, Dover N, Rahavmanor O, Dibrov P, Kirsch D, Karpel R et al (1994) A single amino acid substitution (Glu134 → Ala) in NhaR1 increases the inducibility by Na+ of the product of nhaA, a Na+/H+ antiporter gene in Escherichia coli. EMBO J 13:1981–1989PubMedGoogle Scholar
  12. Carmel O, Rahav-Manor O, Dover N, Shaanan B, Padan E (1997) The Na+-specific interaction between the LysR-type regulator, NhaR, and the nhaA gene encoding the Na+/H+ antiporter of Escherichia coli. EMBO J 16:5922–5929PubMedCrossRefGoogle Scholar
  13. Cavener DR (1992) GMC oxidoreductases. A newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol 223:811–814PubMedCrossRefGoogle Scholar
  14. Cho YH, Lee EJ, Roe JH (2000) A developmentally regulated catalase required for proper differentiation and osmoprotection of Streptomyces coelicolor. Mol Microbiol 35:150–160PubMedCrossRefGoogle Scholar
  15. Csonka LN, Epstein W (1996) Osmoregulation. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium, Cellular and molecular biology. ASM Press, Washington, pp 1210–1223Google Scholar
  16. Curtis RA, Lue L (2006) A molecular approach to bioseparations: protein-protein and protein-salt interactions. Chem Eng Sci 61:907–923CrossRefGoogle Scholar
  17. Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells in Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357PubMedCrossRefGoogle Scholar
  18. Ebel C, Faou P, Kernel B, Zaccai G (1999) Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase. Biochemistry 38:9039–9047PubMedCrossRefGoogle Scholar
  19. Fong NJ, Burgess ML, Barrow KD, Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756PubMedCrossRefGoogle Scholar
  20. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  21. Gralla JD, Vargas DR (2006) Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J 25:1515–1521PubMedCrossRefGoogle Scholar
  22. Gu ZJ, Wang L, Le Rudulier D, Zhang B, Yang SS (2008) Characterization of the glycine betaine biosynthetic genes in the moderately halophilic bacterium Halobacillus dabanensis D-8(T). Curr Microbiol 57:306–311PubMedCrossRefGoogle Scholar
  23. Hallsworth JE, Heim S, Timmis KN (2003) Chaotropic solutes cause water stress in Pseudomonas putida. Environ Microbiol 5:1270–1280PubMedCrossRefGoogle Scholar
  24. Hofmeister F (1888) Lehre von der Wirkung der Salze. Arch Exp Pathol Pharmakol 24:247–260CrossRefGoogle Scholar
  25. Karpel R, Alon T, Glaser G, Schuldiner S, Padan E (1991) Expression of a sodium/proton antiporter (NhaA) in Escherichia coli is induced by Na+ and Li+ ions. J Biol Chem 266:21753–21759PubMedGoogle Scholar
  26. Kelly M, Norgard S, Liaaen-Jensen S (1970) Bacterial carotenoids. 31. C50-carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin. Acta Chem Scand 24:2169–2182PubMedCrossRefGoogle Scholar
  27. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  28. Kempf B, Gade J, Bremer E (1997) Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 179:6213–6220PubMedGoogle Scholar
  29. Köcher S, Breitenbach J, Müller V, Sandmann G (2009) Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. Arch Microbiol 191:95–104PubMedCrossRefGoogle Scholar
  30. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256PubMedCrossRefGoogle Scholar
  31. Lamark T, Kaasen I, Eshoo MW, Falkenberg P, McDougall J, Strom AR (1991) DNA sequence and analysis of the bet genes encoding the osmoregulatory choline-glycine betaine pathway of Escherichia coli. Mol Microbiol 5:1049–1064PubMedCrossRefGoogle Scholar
  32. Lee SJ, Gralla JD (2004) Osmo-regulation of bacterial transcription via poised RNA polymerase. Mol Cell 14:153–162PubMedCrossRefGoogle Scholar
  33. Lee JS, Heo YJ, Lee JK, Cho YH (2005) KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect Immun 73:4399–4403PubMedCrossRefGoogle Scholar
  34. Lippert K, Galinski AA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65CrossRefGoogle Scholar
  35. Lo Nostro P, Ninham BW, Lo Nostro A, Pesavento G, Fratoni L, Baglioni P (2005) Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa. Phys Biol 2:1–7PubMedCrossRefGoogle Scholar
  36. Louis P, Trüper HG, Galinski EA (1994) Survival of Escherichia coli during drying and storage in the presence of compatible solute. Appl Microbiol Biotechnol 41:684–688CrossRefGoogle Scholar
  37. Lutnaes BF, Oren A, Liaaen-Jensen S (2002) New C(40)-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343PubMedCrossRefGoogle Scholar
  38. Perez-Jimenez R, Godoy-Ruiz R, Ibarra-Molero B, Sanchez-Ruiz JM (2004) The efficiency of different salts to screen charge interactions in proteins: a Hofmeister effect? Biophys J 86:2414–2429PubMedCrossRefGoogle Scholar
  39. Pinna MC, Salis A, Monduzzi M, Ninham BW (2005a) Hofmeister series: the hydrolytic activity of Aspergillus niger lipase depends on specific anion effects. J Phys Chem B 109:5406–5408PubMedCrossRefGoogle Scholar
  40. Pinna MC, Bauduin P, Touraud D, Monduzzi M, Ninham BW, Kunz W (2005b) Hofmeister effects in biology: effect of choline addition on the salt-induced super activity of horseradish peroxidase and its implication for salt resistance of plants. J Phys Chem B 109:16511–16514PubMedCrossRefGoogle Scholar
  41. Rahav-Manor O, Carmel O, Karpel R, Taglicht D, Glaser G, Schuldiner S, Padan E (1992) NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J Biol Chem 267:10433–10438PubMedGoogle Scholar
  42. Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5:796–812CrossRefGoogle Scholar
  43. Roeßler M, Müller V (1998) Quantitative and physiological analyses of chloride dependence of growth of Halobacillus halophilus. Appl Environ Microbiol 64:3813–3817PubMedGoogle Scholar
  44. Roeßler M, Müller V (2001a) Chloride dependence of glycine betaine transport in Halobacillus halophilus. FEBS Lett 489:125–128PubMedCrossRefGoogle Scholar
  45. Roeßler M, Müller V (2001b) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754CrossRefGoogle Scholar
  46. Roeßler M, Müller V (2002) Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184:6207–6215PubMedCrossRefGoogle Scholar
  47. Roeßler M, Wanner G, Müller V (2000) Motility and flagellum synthesis in Halobacillus halophilus are chloride dependent. J Bacteriol 182:532–535PubMedCrossRefGoogle Scholar
  48. Saito T, Terato H, Yamamoto O (1994) Pigments of Rubrobacter radiotolerans. Arch Microbiol 162:414–421CrossRefGoogle Scholar
  49. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12PubMedCrossRefGoogle Scholar
  50. Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975PubMedCrossRefGoogle Scholar
  51. Saum SH, Müller V (2008a) Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. Saline Syst 4:4PubMedCrossRefGoogle Scholar
  52. Saum SH, Müller V (2008b) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726PubMedCrossRefGoogle Scholar
  53. Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815PubMedCrossRefGoogle Scholar
  54. Saum SH, Roessler M, Koller C, Sydow JF, Müller V (2007) Glutamate restores growth but not motility in the absence of chloride in the moderate halophile Halobacillus halophilus. Extremophiles 11:711–717PubMedCrossRefGoogle Scholar
  55. Severin J (1993) Kompatible Solute und Wachstumskinetik bei halophilen aeroben heterotrophen Eubakterien. PhD thesis, University of BonnGoogle Scholar
  56. Sewald X, Saum SH, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2007) Autoinducer-2-producing protein LuxS, a novel salt- and chloride-induced protein in the moderately halophilic bacterium Halobacillus halophilus. Appl Environ Microbiol 73:371–379PubMedCrossRefGoogle Scholar
  57. Shindo K, Endo M, Miyake Y, Wakasugi K, Morritt D, Bramley PM et al (2008) Methyl glucosyl-3, 4-dehydro-apo-8′-lycopenoate, a novel antioxidative glyco-C(30)-carotenoic acid produced by a marine bacterium Planococcus maritimus. J Antibiot (Tokyo) 61:729–735CrossRefGoogle Scholar
  58. Turner M, Jervis DI (1963) The distribution of pigmented Bacillus species in saltmarsh and other saline and non-saline soils. Nova Hedwig 16:293–298Google Scholar
  59. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  60. Westh P, Kato H, Nishikawa K, Koga Y (2006) Toward understanding the Hofmeister series. 3. Effects of sodium halides on the molecular organization of H2O as probed by 1-propanol. J Phys Chem A 110:2072–2078PubMedCrossRefGoogle Scholar
  61. Woodall AA, Britton G, Jackson MJ (1997) Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1336:575–586PubMedCrossRefGoogle Scholar
  62. Yamaguchi K, Yu F, Inouye M (1988) A single amino acid determinant of the membrane localization of lipoproteins in Escherichia coli. Cell 53:423–432PubMedCrossRefGoogle Scholar
  63. Yokoyama A, Sandmann G, Hoshino T, Adachi K, Sakai M, Shizuri Y (1995) Thermozeaxanthin, new carotenoid-glycoside-esters from thermophilic eubacterium Thermus thermophilus. Tetrahedron Lett 36:4901–4904Google Scholar
  64. Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345PubMedCrossRefGoogle Scholar
  65. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Molecular Microbiology and Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations