Advertisement

Osmoadaptation in Methanogenic Archaea: Physiology, Genetics, and Regulation in Methanosarcina mazei Gö1

  • Katharina Schlegel
  • Volker Müller
Reference work entry

Introduction

Archaea are ubiquitous in nature and thus also inhabit saline environments or have to cope with changing salt concentrations in their environment (Martin et al. 1999; Achtman and Wagner 2008). Like for bacteria, the biggest challenge is to adjust the turgor and this feature may even be of more importance since a number of archaea do not have rigid outer cell surfaces such as the peptidoglycan in the Gram-positive bacteria that contributes intrinsically to salt resistance (Kandler and König 1998; Sleytr and Beveridge 1999). Most archaea also use the “compatible solute” strategy for turgor adjustment (Galinski and Trüper 1994) and have been in the focus of research since it was hoped to find new, biotechnologically interesting compatible solutes in archaea (Sowers et al. 1990; Empadinhas et al. 2001; Pflüger et al. 2003; Saum et al. 2009a). Indeed, the nature of the compatible solutes used by bacteria and archaea is different (Roeßler and Müller 2001). Generally, the...

Keywords

Glutamine Synthetase Compatible Solute Glycine Betaine Methanogenic Archaea Salt Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Generous support of the project by the Deutsche Forschungsgemeinschaft (Priority programme 1112) and the “Biodiversity and Climate Research Center” (Bik-F), Frankfurt, is gratefully acknowledged.

References

  1. Abken HJ, Tietze M, Brodersen J, Baumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032PubMedGoogle Scholar
  2. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440PubMedGoogle Scholar
  3. Ashby MK (2006) Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea 2:11–30PubMedCrossRefGoogle Scholar
  4. Bakker EP (1992) Cellular K+ and K+ transport systems in procaryotes. CRC Press, Boca RatonGoogle Scholar
  5. Becher B, Müller V, Gottschalk G (1992) The methyltetrahydromethanopterin: coenzyme M methyltransferase of Methanosarcina strain Gö1 is a primary sodium pump. FEMS Microbiol Lett 91:239–244Google Scholar
  6. Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur J Biochem 217:587–595PubMedCrossRefGoogle Scholar
  7. Brenneis M, Hering O, Lange C, Soppa J (2007) Experimental characterization of cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet 3:2450–2467CrossRefGoogle Scholar
  8. Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178:7221–7226PubMedGoogle Scholar
  9. Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1998) Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol 64:4095–4097PubMedGoogle Scholar
  10. Cánovas D, Vargas C, Kneip S, Morón MJ, Ventosa A, Bremer E, Nieto JJ (2000) Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology 146:455–463PubMedGoogle Scholar
  11. Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 45:123–152PubMedCrossRefGoogle Scholar
  12. Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990a) Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453PubMedCrossRefGoogle Scholar
  13. Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990b) Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Gö1 and Methanolobus tindarius. FEBS Lett 1:199–203CrossRefGoogle Scholar
  14. Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163CrossRefGoogle Scholar
  15. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461PubMedGoogle Scholar
  16. Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 179:3146–3153PubMedGoogle Scholar
  17. Ehlers C, Veit K, Gottschalk G, Schmitz RA (2002) Functional organisation of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1:143–150PubMedCrossRefGoogle Scholar
  18. Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA (2005) Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability. Mol Microbiol 55:1841–1854PubMedCrossRefGoogle Scholar
  19. Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206PubMedGoogle Scholar
  20. Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588PubMedCrossRefGoogle Scholar
  21. Erdmann N, Fulda S, Hagemann M (1992) Glucosylglycerol accumulation during salt acclimation of two unicellular cyanobacteria. J Gen Microbiol 138:363–368Google Scholar
  22. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W et al (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  23. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108CrossRefGoogle Scholar
  24. Geiduschek EP, Ouhammouch M (2005) Archaeal transcription and its regulators. Mol Microbiol 56:1397–1407PubMedCrossRefGoogle Scholar
  25. Gerhardt PN, Tombras Smith L, Smith GM (2000) Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. J Bacteriol 182:2544–2550PubMedCrossRefGoogle Scholar
  26. Haardt M, Kempf B, Faatz E, Bremer E (1995) The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. Mol Gen Genet 246:783–786PubMedCrossRefGoogle Scholar
  27. Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969PubMedCrossRefGoogle Scholar
  28. Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185:1289–1298PubMedCrossRefGoogle Scholar
  29. Hovey R, Lentes S, Ehrenreich A, Salmon K, Saba K, Gottschalk G et al (2005) DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273:225–239PubMedCrossRefGoogle Scholar
  30. Huber H, Soppa J (2008) Gene regulation and genome function in Archaea: a progress survey. Arch Microbiol 190:195–196PubMedCrossRefGoogle Scholar
  31. Jäger D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA (2009) Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci USA 106:21878–21882PubMedCrossRefGoogle Scholar
  32. Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and diversity of archaebacteria. Microbiol Rev 51:135–177PubMedGoogle Scholar
  33. Jung K, Altendorf K (2002) Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J Mol Microbiol Biotechnol 4:223–228PubMedGoogle Scholar
  34. Kandler O, König H (1998) Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54:305–308PubMedCrossRefGoogle Scholar
  35. Kempf B, Bremer E (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270:16701–16713PubMedCrossRefGoogle Scholar
  36. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330PubMedCrossRefGoogle Scholar
  37. Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431PubMedGoogle Scholar
  38. Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369PubMedCrossRefGoogle Scholar
  39. Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarina species. Eur J Biochem 135:89–94PubMedCrossRefGoogle Scholar
  40. Kühn W, Fiebig K, Walther R, Gottschalk G (1979) Presence of a cytochrome b559 in Methanosarcina barkeri. FEBS Lett 105:271–274PubMedCrossRefGoogle Scholar
  41. Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358PubMedGoogle Scholar
  42. Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397PubMedCrossRefGoogle Scholar
  43. Le Rudulier D, Strøm AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068PubMedCrossRefGoogle Scholar
  44. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS et al (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931PubMedCrossRefGoogle Scholar
  45. Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825PubMedGoogle Scholar
  46. Martin DD, Ciulla RA, Robinson PM, Roberts MF (2001) Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. Biochim Biophys Acta 1524:1–10PubMedCrossRefGoogle Scholar
  47. Martins LO, Huber R, Huber H, Stetter KO, DaCosta MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902PubMedGoogle Scholar
  48. Müller V, Blaut M, Gottschalk G (1987) Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur J Biochem 162:461–466PubMedCrossRefGoogle Scholar
  49. Müller V, Blaut M, Gottschalk G (1988) The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur J Biochem 172:601–606PubMedCrossRefGoogle Scholar
  50. Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736PubMedCrossRefGoogle Scholar
  51. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  52. Ozcan N, Krämer R, Morbach S (2005) Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity. J Bacteriol 187:4752–4759PubMedCrossRefGoogle Scholar
  53. Park S, Smith LT, Smith GM (1995) Role of glycine betaine and related osmolytes in osmotic stress adaptation in Yersinia enterocolitica ATCC 9610. Appl Environ Microbiol 61:4378–4381PubMedGoogle Scholar
  54. Pflüger K, Müller V (2004) Transport of compatible solutes in extremophiles. J Bioenerg Biomembr 36:17–24PubMedCrossRefGoogle Scholar
  55. Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V (2003) Lysine-2, 3-aminomutase and ß-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of NΕ-acetyl-ß-lysine and growth at high salinity. Appl Environ Microbiol 69:6047–6055PubMedCrossRefGoogle Scholar
  56. Pflüger K, Wieland H, Müller V (2005) Osmoadaptation in methanogenic Archaea: recent insights from a genomic perspective. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 241–251Google Scholar
  57. Pflüger K, Ehrenreich A, Salmon K, Gunsalus RP, Deppenmeier U, Gottschalk G, Müller V (2007) Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling. FEMS Microbiol Lett 277:79–89PubMedCrossRefGoogle Scholar
  58. Pihl TD, Sharma S, Reeve JN (1994) Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum ∆ H. J Bacteriol 176:6384–6391PubMedGoogle Scholar
  59. Proctor LM, Lai R, Gunsalus RP (1997) The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microbiol 63:2252–2257PubMedGoogle Scholar
  60. Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC et al (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39:51–56CrossRefGoogle Scholar
  61. Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5:796–812CrossRefGoogle Scholar
  62. Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019PubMedCrossRefGoogle Scholar
  63. Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes Nε-acetyl-ß-lysine, ß-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693PubMedGoogle Scholar
  64. Robertson DE, Noll D, Roberts MF, Menaia JAGF, Boone DR (1990) Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol 56:563–565PubMedGoogle Scholar
  65. Robertson DE, Noll D, Roberts MF (1992a) Free amino acid dynamics in marine methanogens - ß-amino acids as compatible solutes. J Biol Chem 267:14893–14901PubMedGoogle Scholar
  66. Robertson DE, Lai MC, Gunsalus RP, Roberts MF (1992b) Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus Strain FDF1. Appl Environ Microbiol 58:2438–2443PubMedGoogle Scholar
  67. Robinson PM, Roberts MF (1997) Effects of osmolyte precursors on the distribution of compatible solutes in Methanohalophilus portucalensis. Appl Environ Microbiol 63:4032–4038PubMedGoogle Scholar
  68. Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754CrossRefGoogle Scholar
  69. Roeßler M, Pflüger K, Flach H, Lienard T, Gottschalk G, Müller V (2002) Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1. Appl Environ Microbiol 68:2133–2139PubMedCrossRefGoogle Scholar
  70. Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975PubMedCrossRefGoogle Scholar
  71. Saum SH, Müller V (2008) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726PubMedCrossRefGoogle Scholar
  72. Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815PubMedCrossRefGoogle Scholar
  73. Saum R, Mingote A, Santos H, Müller V (2009a) A novel limb in the osmoregulatory network of Methanosarcina mazei Gö1: Nε-acetyl-ß-lysine can be substituted by glutamate and alanine. Environ Microbiol 11:1056–1065PubMedCrossRefGoogle Scholar
  74. Saum R, Schlegel K, Meyer B, Müller V (2009b) The F1FO ATP synthase genes in Methanosarcina acetivorans are dispensable for growth and ATP synthesis. FEMS Microbiol Lett 300:230–236PubMedCrossRefGoogle Scholar
  75. Saum R, Mingote A, Santos H, Müller V (2009c) Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei Gö1. Arch Microbiol 191:291–301PubMedCrossRefGoogle Scholar
  76. Schmidt S, Pflüger K, Kögl S, Spanheimer R, Müller V (2007) The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter. FEMS Microbiol Lett 277:44–49PubMedCrossRefGoogle Scholar
  77. Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260PubMedCrossRefGoogle Scholar
  78. Soppa J (2001) Basal and regulated transcription in Archaea. Adv Appl Microbiol 50:171–217PubMedCrossRefGoogle Scholar
  79. Sowers KR, Gunsalus RP (1995) Halotolerance in Methanosarcina spp.: role of Nε-acetyl-ß-lysine, α-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl Environ Microbiol 61:4382–4388PubMedGoogle Scholar
  80. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978PubMedGoogle Scholar
  81. Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) Nε-acetyl-β-lysine - an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci USA 87:9083–9087PubMedCrossRefGoogle Scholar
  82. Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839PubMedGoogle Scholar
  83. Spanheimer R, Hoffmann M, Kögl S, Schmidt S, Pflüger K, Müller V (2008) Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon Methanosarcina mazei Gö1. J Mol Microbiol Biotechnol 15:255–263PubMedCrossRefGoogle Scholar
  84. Spanheimer R, Müller V (2008) The molecular basis of salt adaptation in Methanosarcina mazei Gö1. Arch Microbiol 190:271–279Google Scholar
  85. Sprtt GD, Jarrell KF (1981) K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27:444–451PubMedCrossRefGoogle Scholar
  86. Sugiura A, Hirokawa K, Nakashima K, Mizuno T (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol Microbiol 14:929–938PubMedCrossRefGoogle Scholar
  87. Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591PubMedCrossRefGoogle Scholar
  88. Thomm M (1996) Archaeal transcription factors and their role in transcription initiation. FEMS Microbiol Rev 18:159–171PubMedCrossRefGoogle Scholar
  89. Torarinsson E, Klenk HP, Garrett RA (2005) Divergent transcriptional and translational signals in Archaea. Environ Microbiol 7:47–54PubMedCrossRefGoogle Scholar
  90. Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP et al (2006) Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 276:41–55PubMedCrossRefGoogle Scholar
  91. Weidenbach K, Ehlers C, Kock J, Ehrenreich A, Schmitz RA (2008) Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch Microbiol 190:319–332PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Molecular Microbiology & Bioenergetics, Institute of Molecular BiosciencesJohann Wolfgang Goethe University FrankfurtFrankfurt am MainGermany

Personalised recommendations