Skip to main content

Osmoadaptation in Methanogenic Archaea: Physiology, Genetics, and Regulation in Methanosarcina mazei Gö1

  • Reference work entry
Extremophiles Handbook

Introduction

Archaea are ubiquitous in nature and thus also inhabit saline environments or have to cope with changing salt concentrations in their environment (Martin et al. 1999; Achtman and Wagner 2008). Like for bacteria, the biggest challenge is to adjust the turgor and this feature may even be of more importance since a number of archaea do not have rigid outer cell surfaces such as the peptidoglycan in the Gram-positive bacteria that contributes intrinsically to salt resistance (Kandler and König 1998; Sleytr and Beveridge 1999). Most archaea also use the “compatible solute” strategy for turgor adjustment (Galinski and Trüper 1994) and have been in the focus of research since it was hoped to find new, biotechnologically interesting compatible solutes in archaea (Sowers et al. 1990; Empadinhas et al. 2001; Pflüger et al. 2003; Saum et al. 2009a). Indeed, the nature of the compatible solutes used by bacteria and archaea is different (Roeßler and Müller 2001). Generally, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abken HJ, Tietze M, Brodersen J, Baumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

    PubMed  CAS  Google Scholar 

  • Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    PubMed  CAS  Google Scholar 

  • Ashby MK (2006) Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea 2:11–30

    Article  PubMed  CAS  Google Scholar 

  • Bakker EP (1992) Cellular K+ and K+ transport systems in procaryotes. CRC Press, Boca Raton

    Google Scholar 

  • Becher B, Müller V, Gottschalk G (1992) The methyltetrahydromethanopterin: coenzyme M methyltransferase of Methanosarcina strain Gö1 is a primary sodium pump. FEMS Microbiol Lett 91:239–244

    CAS  Google Scholar 

  • Bonacker LG, Baudner S, Mörschel E, Böcher R, Thauer RK (1993) Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur J Biochem 217:587–595

    Article  PubMed  CAS  Google Scholar 

  • Brenneis M, Hering O, Lange C, Soppa J (2007) Experimental characterization of cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genet 3:2450–2467

    Article  CAS  Google Scholar 

  • Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178:7221–7226

    PubMed  Google Scholar 

  • Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1998) Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol 64:4095–4097

    PubMed  Google Scholar 

  • Cánovas D, Vargas C, Kneip S, Morón MJ, Ventosa A, Bremer E, Nieto JJ (2000) Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology 146:455–463

    PubMed  Google Scholar 

  • Deppenmeier U, Müller V (2008) Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 45:123–152

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990a) Reduced coenzyme F420: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990b) Membrane-bound F420H2-dependent heterodisulfide reductase in methanogenic bacterium strain Gö1 and Methanolobus tindarius. FEBS Lett 1:199–203

    Article  Google Scholar 

  • Deppenmeier U, Müller V, Gottschalk G (1996) Pathways of energy conservation in methanogenic archaea. Arch Microbiol 165:149–163

    Article  CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    PubMed  CAS  Google Scholar 

  • Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic archaea. J Bacteriol 179:3146–3153

    PubMed  CAS  Google Scholar 

  • Ehlers C, Veit K, Gottschalk G, Schmitz RA (2002) Functional organisation of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1:143–150

    Article  PubMed  CAS  Google Scholar 

  • Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA (2005) Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability. Mol Microbiol 55:1841–1854

    Article  PubMed  CAS  Google Scholar 

  • Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206

    PubMed  CAS  Google Scholar 

  • Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (2001) Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J Biol Chem 276:43580–43588

    Article  PubMed  CAS  Google Scholar 

  • Erdmann N, Fulda S, Hagemann M (1992) Glucosylglycerol accumulation during salt acclimation of two unicellular cyanobacteria. J Gen Microbiol 138:363–368

    CAS  Google Scholar 

  • Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W et al (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Geiduschek EP, Ouhammouch M (2005) Archaeal transcription and its regulators. Mol Microbiol 56:1397–1407

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt PN, Tombras Smith L, Smith GM (2000) Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. J Bacteriol 182:2544–2550

    Article  PubMed  CAS  Google Scholar 

  • Haardt M, Kempf B, Faatz E, Bremer E (1995) The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. Mol Gen Genet 246:783–786

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969

    Article  PubMed  CAS  Google Scholar 

  • Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Hovey R, Lentes S, Ehrenreich A, Salmon K, Saba K, Gottschalk G et al (2005) DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273:225–239

    Article  PubMed  CAS  Google Scholar 

  • Huber H, Soppa J (2008) Gene regulation and genome function in Archaea: a progress survey. Arch Microbiol 190:195–196

    Article  PubMed  CAS  Google Scholar 

  • Jäger D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA (2009) Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci USA 106:21878–21882

    Article  PubMed  Google Scholar 

  • Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and diversity of archaebacteria. Microbiol Rev 51:135–177

    PubMed  CAS  Google Scholar 

  • Jung K, Altendorf K (2002) Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J Mol Microbiol Biotechnol 4:223–228

    PubMed  CAS  Google Scholar 

  • Kandler O, König H (1998) Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54:305–308

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1995) OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270:16701–16713

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Ko R, Smith LT, Smith GM (1994) Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J Bacteriol 176:426–431

    PubMed  CAS  Google Scholar 

  • Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369

    Article  PubMed  CAS  Google Scholar 

  • Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarina species. Eur J Biochem 135:89–94

    Article  PubMed  Google Scholar 

  • Kühn W, Fiebig K, Walther R, Gottschalk G (1979) Presence of a cytochrome b559 in Methanosarcina barkeri. FEBS Lett 105:271–274

    Article  PubMed  Google Scholar 

  • Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397

    Article  PubMed  CAS  Google Scholar 

  • Le Rudulier D, Strøm AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  PubMed  Google Scholar 

  • Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS et al (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931

    Article  PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Robinson PM, Roberts MF (2001) Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. Biochim Biophys Acta 1524:1–10

    Article  PubMed  CAS  Google Scholar 

  • Martins LO, Huber R, Huber H, Stetter KO, DaCosta MS, Santos H (1997) Organic solutes in hyperthermophilic Archaea. Appl Environ Microbiol 63:896–902

    PubMed  CAS  Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1987) Generation of a transmembrane gradient of Na+ in Methanosarcina barkeri. Eur J Biochem 162:461–466

    Article  PubMed  Google Scholar 

  • Müller V, Blaut M, Gottschalk G (1988) The transmembrane electrochemical gradient of Na+ as driving force for methanol oxidation in Methanosarcina barkeri. Eur J Biochem 172:601–606

    Article  PubMed  Google Scholar 

  • Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736

    Article  PubMed  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Ozcan N, Krämer R, Morbach S (2005) Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity. J Bacteriol 187:4752–4759

    Article  PubMed  Google Scholar 

  • Park S, Smith LT, Smith GM (1995) Role of glycine betaine and related osmolytes in osmotic stress adaptation in Yersinia enterocolitica ATCC 9610. Appl Environ Microbiol 61:4378–4381

    PubMed  CAS  Google Scholar 

  • Pflüger K, Müller V (2004) Transport of compatible solutes in extremophiles. J Bioenerg Biomembr 36:17–24

    Article  PubMed  Google Scholar 

  • Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V (2003) Lysine-2, 3-aminomutase and ß-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of NΕ-acetyl-ß-lysine and growth at high salinity. Appl Environ Microbiol 69:6047–6055

    Article  PubMed  Google Scholar 

  • Pflüger K, Wieland H, Müller V (2005) Osmoadaptation in methanogenic Archaea: recent insights from a genomic perspective. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 241–251

    Google Scholar 

  • Pflüger K, Ehrenreich A, Salmon K, Gunsalus RP, Deppenmeier U, Gottschalk G, Müller V (2007) Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling. FEMS Microbiol Lett 277:79–89

    Article  PubMed  Google Scholar 

  • Pihl TD, Sharma S, Reeve JN (1994) Growth phase-dependent transcription of the genes that encode the two methyl coenzyme M reductase isoenzymes and N5-methyltetrahydromethanopterin:coenzyme M methyltransferase in Methanobacterium thermoautotrophicum ∆ H. J Bacteriol 176:6384–6391

    PubMed  CAS  Google Scholar 

  • Proctor LM, Lai R, Gunsalus RP (1997) The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microbiol 63:2252–2257

    PubMed  CAS  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC et al (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39:51–56

    Article  CAS  Google Scholar 

  • Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5:796–812

    Article  Google Scholar 

  • Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes Nε-acetyl-ß-lysine, ß-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693

    PubMed  CAS  Google Scholar 

  • Robertson DE, Noll D, Roberts MF, Menaia JAGF, Boone DR (1990) Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol 56:563–565

    PubMed  CAS  Google Scholar 

  • Robertson DE, Noll D, Roberts MF (1992a) Free amino acid dynamics in marine methanogens - ß-amino acids as compatible solutes. J Biol Chem 267:14893–14901

    PubMed  CAS  Google Scholar 

  • Robertson DE, Lai MC, Gunsalus RP, Roberts MF (1992b) Composition, variation, and dynamics of major osmotic solutes in Methanohalophilus Strain FDF1. Appl Environ Microbiol 58:2438–2443

    PubMed  CAS  Google Scholar 

  • Robinson PM, Roberts MF (1997) Effects of osmolyte precursors on the distribution of compatible solutes in Methanohalophilus portucalensis. Appl Environ Microbiol 63:4032–4038

    PubMed  CAS  Google Scholar 

  • Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754

    Article  Google Scholar 

  • Roeßler M, Pflüger K, Flach H, Lienard T, Gottschalk G, Müller V (2002) Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1. Appl Environ Microbiol 68:2133–2139

    Article  PubMed  Google Scholar 

  • Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Müller V (2008) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10:716–726

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815

    Article  PubMed  CAS  Google Scholar 

  • Saum R, Mingote A, Santos H, Müller V (2009a) A novel limb in the osmoregulatory network of Methanosarcina mazei Gö1: Nε-acetyl-ß-lysine can be substituted by glutamate and alanine. Environ Microbiol 11:1056–1065

    Article  PubMed  CAS  Google Scholar 

  • Saum R, Schlegel K, Meyer B, Müller V (2009b) The F1FO ATP synthase genes in Methanosarcina acetivorans are dispensable for growth and ATP synthesis. FEMS Microbiol Lett 300:230–236

    Article  PubMed  CAS  Google Scholar 

  • Saum R, Mingote A, Santos H, Müller V (2009c) Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei Gö1. Arch Microbiol 191:291–301

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Pflüger K, Kögl S, Spanheimer R, Müller V (2007) The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter. FEMS Microbiol Lett 277:44–49

    Article  PubMed  CAS  Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  PubMed  CAS  Google Scholar 

  • Soppa J (2001) Basal and regulated transcription in Archaea. Adv Appl Microbiol 50:171–217

    Article  PubMed  CAS  Google Scholar 

  • Sowers KR, Gunsalus RP (1995) Halotolerance in Methanosarcina spp.: role of Nε-acetyl-ß-lysine, α-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl Environ Microbiol 61:4382–4388

    PubMed  CAS  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    PubMed  CAS  Google Scholar 

  • Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) Nε-acetyl-β-lysine - an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci USA 87:9083–9087

    Article  PubMed  CAS  Google Scholar 

  • Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839

    PubMed  CAS  Google Scholar 

  • Spanheimer R, Hoffmann M, Kögl S, Schmidt S, Pflüger K, Müller V (2008) Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon Methanosarcina mazei Gö1. J Mol Microbiol Biotechnol 15:255–263

    Article  PubMed  CAS  Google Scholar 

  • Spanheimer R, Müller V (2008) The molecular basis of salt adaptation in Methanosarcina mazei Gö1. Arch Microbiol 190:271–279

    Google Scholar 

  • Sprtt GD, Jarrell KF (1981) K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27:444–451

    Article  PubMed  CAS  Google Scholar 

  • Sugiura A, Hirokawa K, Nakashima K, Mizuno T (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol Microbiol 14:929–938

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591

    Article  PubMed  CAS  Google Scholar 

  • Thomm M (1996) Archaeal transcription factors and their role in transcription initiation. FEMS Microbiol Rev 18:159–171

    Article  PubMed  CAS  Google Scholar 

  • Torarinsson E, Klenk HP, Garrett RA (2005) Divergent transcriptional and translational signals in Archaea. Environ Microbiol 7:47–54

    Article  PubMed  CAS  Google Scholar 

  • Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP et al (2006) Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 276:41–55

    Article  PubMed  CAS  Google Scholar 

  • Weidenbach K, Ehlers C, Kock J, Ehrenreich A, Schmitz RA (2008) Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch Microbiol 190:319–332

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Generous support of the project by the Deutsche Forschungsgemeinschaft (Priority programme 1112) and the “Biodiversity and Climate Research Center” (Bik-F), Frankfurt, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Schlegel, K., Müller, V. (2011). Osmoadaptation in Methanogenic Archaea: Physiology, Genetics, and Regulation in Methanosarcina mazei Gö1. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_15

Download citation

Publish with us

Policies and ethics