Advertisement

Diversity of Halophiles

  • Aharon Oren

Introduction

Hypersaline environments are inhabited by a great variety of microorganisms, and these are often present in extremely high community densities. Thanks to the fact that some of the most prevalent types are colored by carotenoid and other pigments, no microscope is needed to see halophilic microorganisms in environments such as saltern crystallizer brines and other salt lakes with saturating or near-saturating salt concentrations. Thus, the red-purple color of halophilic microbes can be observed throughout the northern half of Great Salt Lake, Utah.

The world of the halophilic microorganisms is highly diverse. We find representatives of the three domains of life, Archaea, Bacteria, and Eucarya that are adapted to salt concentrations up to saturation. We know aerobic as well as anaerobic halophiles, heterotrophic, phototrophic, and chemoautotrophic types, able to transform a wide variety of substrates (Oren 2002a, b, 2006a, 2007, 2008). Among the halophiles we also encounter...

Keywords

High Salt Concentration Glycine Betaine Great Salt Lake Hypersaline Environment Osmotic Solute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381PubMedCrossRefGoogle Scholar
  2. Antón J, Rosselló-Mora R, Rodríguez-Valera R, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedCrossRefGoogle Scholar
  3. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  4. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220PubMedCrossRefGoogle Scholar
  5. Antunes A, Rainey FA, Wanner G, Taborda M, Pätzold J, Nobre MF, da Costa MS, Huber R (2009) A new lineage of halophilic, wall-less, contractile bacteria from a brine-filled deep on the Red Sea. J Bacteriol 190:3580–3587CrossRefGoogle Scholar
  6. Arahal DR, Ventosa A (2006) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 6, 3rd edn. Springer, New York, pp 811–835CrossRefGoogle Scholar
  7. Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004) Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334PubMedGoogle Scholar
  8. Ben-Amotz A, Avron M (1973) The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol 51:875–878PubMedCrossRefGoogle Scholar
  9. Brandt KK, Ingvorsen K (1997) Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst Appl Microbiol 20:366–373CrossRefGoogle Scholar
  10. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedCrossRefGoogle Scholar
  11. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005a) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79CrossRefGoogle Scholar
  12. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005b) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234PubMedCrossRefGoogle Scholar
  13. Casanueva A, Galada N, Grant BGC, WD HS, Jones B, Ma Y, Ventosa A, Blamey J, Cowan DA (2008) Nanoarchaeal 16S rRNA gene sequences are widely dispersed in hyperthermophilic and mesophilic halophilic environments. Extremophiles 12:651–656PubMedCrossRefGoogle Scholar
  14. Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540PubMedCrossRefGoogle Scholar
  15. Cho BC (2005) Heterotrophic flagellates in hypersaline waters. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 543–549Google Scholar
  16. Conrad R, Frenzel P, Cohen Y (1995) Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol Ecol 16:297–305CrossRefGoogle Scholar
  17. Desmarais D, Jablonski PE, Fedarko NS, Roberts MF (1997) 2-Sulfotrehalose, a novel osmolyte in haloalkaliphilic Archaea. J Bacteriol 179:3146–3153PubMedGoogle Scholar
  18. Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004) Survey of archaeal diversity reveals abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239PubMedCrossRefGoogle Scholar
  19. Fukushima T, Usami R, Kamekura M (2007) A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. Saline Syst 3:2PubMedCrossRefGoogle Scholar
  20. Galinski EA (1993) Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49:487–496CrossRefGoogle Scholar
  21. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:273–328CrossRefGoogle Scholar
  22. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, de Lima AF, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813PubMedCrossRefGoogle Scholar
  23. Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825PubMedCrossRefGoogle Scholar
  24. Hauer G, Rogerson A (2005) Heterotrophic protozoa from hypersaline environments. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, pp 522–539Google Scholar
  25. Hoeft SE, Switzer Blum J, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS (2007) Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512PubMedCrossRefGoogle Scholar
  26. Jäälinoja HT, Roine E, Laurinmäki P, Kivelä HM, Bamford DH, Butcher SJ (2008) Structure and host-cell interaction of SH1, a membrane-containing, halophilic euryarchaeal virus. Proc Natl Acad Sci USA 105:8008–8013PubMedCrossRefGoogle Scholar
  27. Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Oceanogr 44:178–188CrossRefGoogle Scholar
  28. Khmelenina VN, Starostina NG, Tsvetkova MG, Sokolov AP, Suzina NE, Trotsenko YA (1996) Methanotrophic bacteria in saline reservoirs of Ukraina and Tuva. Mikrobiologiya 65:609–615 (Eng Tr)Google Scholar
  29. Khmelenina VN, Kalyuzhneya MG, Starostina NG, Suzina NE, Trotsenko YA (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr Microbiol 35:257–261CrossRefGoogle Scholar
  30. Koops H-P, Böttcher B, Möller U, Pommerening-Röser A, Stehr G (1990) Description of a new species of Nitrosococcus. Arch Microbiol 154:244–248CrossRefGoogle Scholar
  31. Lai M-C, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358PubMedGoogle Scholar
  32. Lanyi JK (1974) Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev 38:272–290PubMedGoogle Scholar
  33. Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064PubMedCrossRefGoogle Scholar
  34. Mackay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191Google Scholar
  35. Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58PubMedCrossRefGoogle Scholar
  36. Mavromatis K, Ivanova N, Anderson I, Lykidis A, Hooper SD, Sun H, Kunin V, Lapidus A, Hugenholtz P, Patel B, Kyrpides NC (2009) Genome analysis of the anaerobic thermohalophilic bacterium Halothermothrix orenii. PLoS ONE 4(1):e4192PubMedCrossRefGoogle Scholar
  37. Mesbah NM, Wiegel J (2008) Life at extreme limits. The anaerobic halophilic alkalithermophiles. Ann NY Acad Sci 1125:44–57PubMedCrossRefGoogle Scholar
  38. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedCrossRefGoogle Scholar
  39. Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R (2008) Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16PubMedCrossRefGoogle Scholar
  40. Mongodin MEF, Nelson KE, Duagherty S, DeBoy RT, Wister J, Khouri H, Weidman J, Balsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodríguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152PubMedCrossRefGoogle Scholar
  41. Nissenbaum A, Kaplan IR (1976) Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea. In: Nriagu JO (ed) Environmental biogeochemistry, vol 1. Ann Arbor Science, Ann Arbor, pp 309–325Google Scholar
  42. Ollivier B, Hatchikian CE, Prensier G, Guezennec J, Garcia J-L (1991) Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81CrossRefGoogle Scholar
  43. Ollivier B, Caumette P, Garcia J-L, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38PubMedGoogle Scholar
  44. Ollivier B, Fardeau M-L, Cayol J-L, Magot M, Patel BKC, Prensier G, Garcia J-L (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int J Syst Bacteriol 48:821–828PubMedCrossRefGoogle Scholar
  45. Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y, Rosenberg E (eds) Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, pp 180–190Google Scholar
  46. Oremland RS, Kulp TR, Switzer Blum J, Hoeft SE, Baesman S, Miller LG, Stolz JF (2005) A microbial arsenic cycle in a salt-saturated extreme environment. Science 308:1305–1308PubMedCrossRefGoogle Scholar
  47. Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can J Microbiol 32:4–9CrossRefGoogle Scholar
  48. Oren A (1988) Anaerobic degradation of organic compounds at high salt concentrations. Antonie Leeuwenhoek 54:267–277PubMedCrossRefGoogle Scholar
  49. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348PubMedGoogle Scholar
  50. Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds) Ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 283–306Google Scholar
  51. Oren A (2002a) Halophilic microorganisms and their environments. Kluwer, DordrechtCrossRefGoogle Scholar
  52. Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedGoogle Scholar
  53. Oren A (2006a) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 2, 3rd edn. Springer, New York, pp 263–282CrossRefGoogle Scholar
  54. Oren A (2006b) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 3, 3rd edn. Springer, New York, pp 113–164CrossRefGoogle Scholar
  55. Oren A (2006c) The order Haloanaerobiales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria, vol 4, 3rd edn. Springer, New York, pp 804–817Google Scholar
  56. Oren A (2007) Biodiversity in highly saline environments. In: Gerdes C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 223–231Google Scholar
  57. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2PubMedCrossRefGoogle Scholar
  58. Oren A, Weisburg WG, Kessel M, Woese CR (1984) Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst Appl Microbiol 5:58–70CrossRefGoogle Scholar
  59. Park JS, Kim H, Choi DH, Cho BC (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat Microb Ecol 33:173–179CrossRefGoogle Scholar
  60. Pietilä MK, Roine E, Paulin L, Kalkkinen N, Bamford DH (2009) An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope. Mol Microbiol 72:307–319PubMedCrossRefGoogle Scholar
  61. Porter K, Russ BE, Dyall-Smith ML (2007) Virus-host interactions in salt lakes. Curr Opin Microbiol 10:418–424PubMedCrossRefGoogle Scholar
  62. Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP, Zavarzin GA (1995) The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185–199PubMedCrossRefGoogle Scholar
  63. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst 1:5PubMedCrossRefGoogle Scholar
  64. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  65. Rubentschik L (1929) Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralbl Bakteriol II Abt 77:1–18Google Scholar
  66. Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, high-sulfide spring. Int J Syst Evol Microbiol 57:19–24PubMedCrossRefGoogle Scholar
  67. Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860PubMedCrossRefGoogle Scholar
  68. Sokolov AP, Trotsenko YA (1995) Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol Ecol 18:299–304CrossRefGoogle Scholar
  69. Sorokin DY, Kuenen JG (2005a) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702PubMedCrossRefGoogle Scholar
  70. Sorokin DY, Kuenen JG (2005b) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295PubMedCrossRefGoogle Scholar
  71. Sorokin DY, Tourova TP, Lysenko AM, Muyzer G (2006) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023PubMedCrossRefGoogle Scholar
  72. Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008a) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicate sp. nov. – a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453PubMedCrossRefGoogle Scholar
  73. Sorokin DY, Tourova TP, Muyzer G, Kuenen GJ (2008b) Thiohalospira halophila gen. nov., sp. nov. and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic, halophilic, sulfur-oxidizing gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 58:1685–1692PubMedCrossRefGoogle Scholar
  74. Sorokin DY, Tourova TP, Galinski EA, Muyzer G, Kuenen JG (2008c) Thiohalorhabdus denitrificans gen. nov., sp. nov., an extremely halophilic, sulfur-oxidizing, deep-lineage gammaproteobacterium from hypersaline habitats. Int J Syst Evol Microbiol 58:2890–2897PubMedCrossRefGoogle Scholar
  75. Switzer Blum J, Stolz JF, Oren A, Oremland RS (2001) Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch Microbiol 175:208–219CrossRefGoogle Scholar
  76. Switzer Blum J, Han S, Lanoil B, Saltikov C, Witte B, Tabita FR, Langley S, Beveridge TJ, Jahnke L, Oremland RS (2009) Ecophysiology of “Haloarsenatibacter silvermanii” strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California. Appl Environ Microbiol 75:1950–1960CrossRefGoogle Scholar
  77. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177:123–131PubMedCrossRefGoogle Scholar
  78. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  79. Ward BB, Martinko DP, Diaz MC, Joye SB (2000) Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl Environ Microbiol 66:2873–2881PubMedCrossRefGoogle Scholar
  80. Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280CrossRefGoogle Scholar
  81. Zavarzin GA, Zhilina TN, Pusheva MA (1994) Halophilic acetogenic bacteria. In: Drake HL (ed) Acetogenesis. Chapman & Hall, New York, pp 432–444CrossRefGoogle Scholar
  82. Zhilina TN, Zavarzin GA (1987) Methanohalobium evestigatum gen. nov., sp. nov., extremely halophilic methane-producing archaebacteria. Dokl Akad Nauk SSSR 293:464–468, in RussianGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesThe Institute of Life Sciences, and Moshe Shilo Minerva Center for Marine Biogeochemistry, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations