Skip to main content

Alkaline Enzymes in Current Detergency

  • Reference work entry

Various enzymes are widely used in industrial fields such as detergent, food, and feed production; leather and textile processing; pharmaceutical production; diagnostics; and waste management. The largest world market for industrial enzymes is the detergent industry. Detergent enzymes account for approximately 30–40% of the total worldwide enzyme production except for diagnostic and therapeutic enzymes. Alkaline enzymes, such as protease, α-amylase, cellulase (endo-1,4-β-glucanase), mannanase and lipase, are incorporated into heavy-duty laundry and dishwashing detergents (Ito et al. 1998; Horikoshi 1999). Most of the alkaline enzymes for detergents were first found by Horikoshi between the 1960s and 1980s. Owing to his discovery of the world of alkaliphiles, detergents containing such alkaline enzymes have been expanded worldwide and established their importance and necessity in the detergent industry.

In 1959, the first detergent that contained a bacterial protease appeared on the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aehle W (1997) Development of new amylases. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 213–229

    Google Scholar 

  • Ara K, Igarashi K, Saeki K, Kawai S, Ito S (1992) Purification and some properties of an alkaline pullulanase from alkalophilic Bacillus sp. KSM-1876. Biosci Biotechnol Biochem 56:62–65

    Article  CAS  Google Scholar 

  • Ara K, Saeki K, Ito S (1993) Purification and characterization of an alkaline isoamylase from an alkalophilic strain of Bacillus. J Gen Microbiol 139:781–786

    CAS  Google Scholar 

  • Ara K, Saeki K, Igarashi K, Takaiwa M, Uemura T, Hagihara H, Kawai S, Ito S (1995) Purification and characterization of an alkaline amylopullulanase with both α-1, 4 and α-1, 6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378. Biochim Biophys Acta 1243:315–324

    Article  PubMed  Google Scholar 

  • Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline proteinase SavinaseTM from Bacillus lentus at 1.4 Å resolution. J Mol Biol 223:427–445

    Article  PubMed  CAS  Google Scholar 

  • Bott R, Ultsch M, Kossiakoff A, Graycar T, Katz B, Power S (1988) The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 Å and analysis of the structural consequence of peroxide inactivation. J Biol Chem 263:7895–7906

    PubMed  CAS  Google Scholar 

  • Boyer EW, Ingle MB (1972) Extracellular alkaline amylase from a Bacillus species. J Bacteriol 110:992–1000

    PubMed  CAS  Google Scholar 

  • Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222

    Article  PubMed  CAS  Google Scholar 

  • Buisson GE, Duée R, Haser R, Pyan F (1987) Three dimensional structure of porcine α-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J 6:3909–3916

    PubMed  CAS  Google Scholar 

  • Davies GJ, Dauter M, Brzozowski M, Bjornvad ME, Andersen KV, Schülein M (1998) Structure of the Bacillus agaradherens family 5 endoglucanase at 1.6 Å and its cellobiose complex at 2.0 Å resolution. Biochemistry 37:1926–1932

    Article  PubMed  CAS  Google Scholar 

  • Davies GJ, Brzozowski AM, Dauter Z, Rasmussen MD, Borchert TV, Wilson KS (2005) Structure of Bacillus halmapalus family 13 α-amylase, BHA, in complex with a acarbose-derived nonasaccharide at 2.1 Å resolution. Acta Crystallogr D Biol Crystallogr 61:190–193

    Article  PubMed  Google Scholar 

  • Declerck N, Joyet P, Trosset JY, Garnier J, Gaillardin C (1995) Hyperthermostable mutants of Bacillus licheniformis α-amylase: multiple amino acid replacements and molecular modeling. Protein Eng 8:1029–1037

    Article  PubMed  CAS  Google Scholar 

  • Declerck N, Machius M, Chambert R, Wiegand G, Huber R, Gaillardin C (1997) Hyperthermostable mutants of Bacillus licheniformis α-amylase; thermodynamic studies and structural interpretation. Protein Eng 10:541–549

    Article  PubMed  CAS  Google Scholar 

  • Egmond MR (1997) Application of proteases in detergents. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 61–74

    Google Scholar 

  • Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521

    PubMed  CAS  Google Scholar 

  • Fukumori F, Kudo T, Narahashi Y, Horikoshi K (1985) Purification and properties of a cellulose from alkalophilic Bacillus sp. no. 1139. J Gen Microbiol 131:3339–3345

    CAS  Google Scholar 

  • Fukumori F, Sashihara N, Kudo T, Horikoshi K (1986) Nucleotide sequences of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology. J Bacteriol 168:479–485

    PubMed  CAS  Google Scholar 

  • Fukumori F, Kudo T, Sashihara N, Nagata Y, Ito K, Horikoshi K (1989) The third gene of alkalophilic Bacillus sp. strain N-4: evolutionary relationship within the cel gene family. Gene 76:289–298

    Article  PubMed  CAS  Google Scholar 

  • Guntelberg AV, Ottesen M (1954) Purification of the proteolytic activity from Bacillus subtilis. C R Trav Lab Carlsberg 29:36–48

    CAS  Google Scholar 

  • Hagihara H, Hayashi Y, Endo K, Igarashi K, Ozawa T, Kawai S, Ozaki K, Ito S (2001a) Deduced amino-acid sequence of a calcium-free α-amylase from a strain of Bacillus. Implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur J Biochem 268:3974–3982

    Article  PubMed  CAS  Google Scholar 

  • Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitamura K, Ozaki K, Kawai S, Ito S (2001b) Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 6:71744–71750

    Google Scholar 

  • Hagihara H, Igarashi K, Hayashi H, Kitayama K, Endo K, Ozawa T, Ozaki K, Kawai S, Ito S (2002) Improvement of thermostability of a calcium-free α-amylase from an alkaliphilic Bacillus sp. by protein engineering. J Appl Glycosci 49:281–289

    Article  CAS  Google Scholar 

  • Hagihara H, Hatada Y, Ozawa T, Igarashi K, Araki H, Ozaki K, Kobayashi T, Kawai S, Ito S (2003) Oxidative stabilization of an alkaliphilic Bacillus α-amylase by replacing a single specific methionine residue by site-directed mutagenesis. J Appl Glycosci 50:367–372

    Article  CAS  Google Scholar 

  • Hakamada Y, Kobayashi T, Hitomi J, Kawai S, Ito S (1994) Molecular cloning and nucleotide sequence of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J Ferment Bioeng 78:105–108

    Article  CAS  Google Scholar 

  • Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1:151–156

    Article  PubMed  CAS  Google Scholar 

  • Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai K, Kobayashi T, Ito S (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic Bacillus strain. Biosci Biotechnol Biochem 64:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Hakamada Y, Hatada Y, Ozawa T, Ozaki K, Kobayashi T, Ito S (2001) Identification of thermostabilizing residues in a Bacillus alkaline cellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis. FEMS Microbiol Lett 195:67–72

    Article  PubMed  CAS  Google Scholar 

  • Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1, 4 and α-1, 6 linkages in polysaccharides at different active sites. J Biol Chem 271:24075–24083

    Article  PubMed  CAS  Google Scholar 

  • Hatada Y, Saito Y, Hagihara H, Ozaki K, Ito S (2001) Nucleotide and deduced amino acid sequences of an alkaline pullulanase from the alkaliphilic bacterium Bacillus sp. KSM-1876. Biochim Biophys Acta 1545:367–371

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Akiba T, Horikoshi K (1988) Production and purification of new maltohexaose-forming amylases alkalophilic Bacillus sp. H-167. Agric Biol Chem 52:443–448

    Article  CAS  Google Scholar 

  • Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, Horikoshi K (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Leeuwenhoek 89:211–219

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K (1971a) Production of alkaline amylases by alkalophilic microorganisms. II. Alkaline amylase produced by Bacillus no. A-40-2. Agric Biol Chem 35:1783–1791

    Article  CAS  Google Scholar 

  • Horikoshi K (1971b) Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 36:1407–1414

    Article  Google Scholar 

  • Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750

    PubMed  CAS  Google Scholar 

  • Horikoshi K, Nakao M, Kurono Y, Sashihara N (1984) Cellulases of an alkalophilic Bacillus strain isolated from soil. Can J Microbiol 30:774–779

    Article  CAS  Google Scholar 

  • Igarashi K, Ara K, Saeki K, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of the gene that encodes a neopullulanase from an alkalophilic Bacillus. Biosci Biotechnol Biochem 56:514–516

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T, Ito S (1998a) Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl Environ Microbiol 64:3282–3289

    PubMed  CAS  Google Scholar 

  • Igarashi K, Hatada Y, Ikawa K, Araki H, Ozawa T, Kobayashi T, Ozaki K, Ito S (1998b) Improved thermostability of a Bacillus α-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem Biophys Res Commun 248:372–377

    Article  PubMed  CAS  Google Scholar 

  • Igarashi K, Ozawa T, Ikawa-Kitayama K, Hayashi Y, Araki H, Endo K, Hagihara H, Ozaki K, Kawai S, Ito S (1999) Thermostabilization by proline substitution in an alkaline, liquefying α-amylase from Bacillus sp. strain KSM-1378. Biosci Biotechnol Biochem 63:1535–1540

    Article  PubMed  CAS  Google Scholar 

  • Ikawa K, Araki H, Tsujino Y, Hayashi Y, Igarashi K, Hatada Y, Hagihara H, Ozawa T, Ozaki K, Kobayashi T, Ito S (1998) Hyperexpression of the gene for a Bacillus α-amylase in Bacillus subtilis cells; enzymatic properties and crystallization of the recombinant enzyme. Biosci Biotechnol Biochem 62:1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281

    Article  CAS  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Hatada Y, Ozawa T, Hagihara H, Araki H, Tsujino Y, Kitayama K, Igarashi K, Kageyama Y, Kobayashi T, Ozaki K (2002) Protein-engineered Bacillus α-amylases that have acquired both enhanced thermostability and chelator resistance. J Appl Glycosci 49:257–264

    Article  CAS  Google Scholar 

  • Joyet P, Declerck N, Gaillardin C (1992) Hyperthermostable variants of highly thermostable alpha-amylase. Biotechnology 10:1579–1583

    Article  PubMed  CAS  Google Scholar 

  • Kageyama Y, Takaki Y, Shimamura S, Nishi S, Nogi Y, Uchimura K, Kobayashi T, Hitomi J, Ozaki K, Kawai S, Ito S, Horikoshi K (2007) Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus calusii spp. Extremophiles 11:597–603

    Article  PubMed  CAS  Google Scholar 

  • Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056

    Article  PubMed  CAS  Google Scholar 

  • Kawaminami S, Ozaki K, Sumitomo N, Hayashi Y, Ito S, Shimada I, Arata Y (1994) A stable isotope-aided NMR study of the active site of an endoglucanase from a strain of Bacillus. J Biol Chem 269:28752–28756

    PubMed  CAS  Google Scholar 

  • Kawaminami S, Takahashi H, Ito S, Arata Y, Shimada I (1999) A multinuclear NMR study of the active site of an endoglucanase from a strain of Bacillus: use of Trp residues as structural probes. J Biol Chem 274:19823–19828

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Matsuzawa H (2000) Requirement for the COOH-terminal pro-sequence in the translocation of aqualysin I across the cytoplasmic membrane in Escherichia coli. Biochem Biophys Res Commun 277:216–220

    Article  PubMed  CAS  Google Scholar 

  • Kim TU, Goo BG, Jing JY, Bun SM, Shin YC (1995) Purification and characterization of maltotetraose-forming alkaline α-amylase from an alkalophilic Bacillus strain, GM8901. Appl Environ Microbiol 61:3105–3112

    PubMed  CAS  Google Scholar 

  • Kim DW, Lin SJ, Morita S, Terada I, Matsuzawa H (1997) A carboxy-terminal pro-sequence of aqualysin I prevents proper folding of the protease domain on its secretion by Saccharomyces cerevisiae. Biochem Biophys Res Commun 231:535–539

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkaliphilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Hakamada Y, Hitomi J, Koike K, Ito S (1996) Purification of alkaline proteases from a Bacillus strain and their possible interrelationship. Appl Microbiol Biotechnol 45:63–71

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kageyama Y, Sumitomo N, Saeki K, Shirai T, Ito S (2005) Contribution of a salt bridge triad to the thermostability of a highly alkaline protease from an alkaliphilic Bacillus strain. World J Microbiol Biotechnol 21:961–967

    Article  CAS  Google Scholar 

  • Kottwitz B, Upadek H (1997) Application of cellulases that contribute to color revival and softening. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 133–148

    Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191

    Article  PubMed  CAS  Google Scholar 

  • Lyublinskaya LA, Belyaev SV, Strongin AYA, Matyash LF, Levin ED, Stepanov VM (1974) A new chromogenic substrate for subtilisin. Anal Biochem 62:371–376

    Article  CAS  Google Scholar 

  • MacGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  Google Scholar 

  • Machius M, Deckerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292

    Article  PubMed  CAS  Google Scholar 

  • Manning GB, Campbell LL (1961) Thermostable α-amylase of Bacillus stearotherophilus. J Biol Chem 236:2952–2957

    PubMed  CAS  Google Scholar 

  • Markland FS, Smith EL (1971) Subtilisins: primary structure, chemical and physical properties. In: Boyer RD (ed) The enzymes, 3rd edn. Academic, New York/London, pp 561–608

    Google Scholar 

  • Maurer KL (1997) Development of new cellulases. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 175–202

    Google Scholar 

  • Misset O (1997) Development of new lipases. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 107–131

    Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SOCP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    PubMed  CAS  Google Scholar 

  • Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761

    Article  CAS  Google Scholar 

  • Nogi Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Fujihashi M, Kita A, Hagihara H, Ozaki K, Ito S, Miki K (2003) Crystal structure of calcium-free α-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J Biol Chem 278:24818–24824

    Article  PubMed  CAS  Google Scholar 

  • Nonaka T, Hujihashi M, Kita A, Saeki K, Ito S, Horikoshi K, Miki K (2004) The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal α-barrel domain. J Biol Chem 279:47344–47351

    Article  PubMed  CAS  Google Scholar 

  • Okoshi H, Ozaki K, Shikata S, Oshino K, Kawai S, Ito S (1990) Purification and characterization of multiple carboxymethyl cellulases from Bacillus sp. KSM-522. Agric Biol Chem 54:83–89

    Article  CAS  Google Scholar 

  • Ozaki K, Shikata S, Kawai S, Ito S, Okamoto K (1990) Molecular cloning and nucleotide sequence of a gene for alkaline cellulase from Bacillus sp. KSM-635. J Gen Microbiol 136:1327–1334

    PubMed  CAS  Google Scholar 

  • Ozaki K, Hayashi Y, Sumitomo N, Kawai S, Ito S (1995) Construction, purification, and properties of a truncated alkaline endoglucanase from Bacillus sp. KSM-635. Biosci Biotechnol Biochem 59:1613–1618

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Hakamada Y, Hatada Y, Kobayashi T, Shirai T, Ito S (2001) Thermostabilization of replacing of specific residues with lysine in a Bacillus alkaline cellulase: building a structural model and implication of newly formed double intrahelical salt bridges. Protein Eng 14:501–504

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Igarashi K, Ozaki K, Kobayashi T, Suzuki A, Shirai T, Yamane T, Ito S (2006) Molecular modeling and implications of a Bacillus α-amylase that acquires enhanced thermostability and chelator resistance by deletion of an arginine-glycine residue. J Appl Glycosci 53:193–197

    Article  CAS  Google Scholar 

  • Ozawa T, Endo K, Igarashi K, Kitayama K, Hayashi Y, Hagihara H, Kawai S, Ito S, Ozaki K (2007) Improvement of the thermal stability of a calcium-free, alkaline α-amylase by site-directed mutagenesis. J Appl Glycosci 54:77–83

    Article  CAS  Google Scholar 

  • Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K (2000) Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic Bacillus spp.: enzymatic properties, sequences, and evolutionary relationships. Biochem Biophys Res Commun 279:313–319

    Article  PubMed  CAS  Google Scholar 

  • Saeki K, Hitomi J, Okuda M, Hatada Y, Kageyama Y, Takaiwa M, Kubota H, Hagihara H, Kobayashi T, Kawai S, Ito S (2002) A novel species of alkaliphilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6:65–72

    Article  PubMed  CAS  Google Scholar 

  • Saito N (1973) A thermostable extracellular α-amylase from Bacillus licheniformis. Arch Biochem Biophys 155:290–298

    Article  PubMed  CAS  Google Scholar 

  • Shaw A, Bott R, Vonrhein C, Bricogne G, Power S, Day AG (2002) A novel combination of two classic catalytic schemes. J Mol Biol 320:303–309

    Article  PubMed  CAS  Google Scholar 

  • Shikata S, Saeki K, Okoshi H, Yoshimatsu T, Ozaki K, Kawai S, Ito S (1990) Alkaline cellulases for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes. Agric Biol Chem 54:91–96

    Article  CAS  Google Scholar 

  • Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng 10:627–634

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Ishida H, Noda J, Yamane T, Ozaki K, Hakamada Y, Ito S (2001) Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol 310:1079–1108

    Article  PubMed  CAS  Google Scholar 

  • Shirai T, Igarashi K, Ozawa T, Hagihara H, Kobayashi T, Ozaki K, Ito S (2007) Ancestral sequence evolutionary trace and crystal structure analyses of alkaline α-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 66:600–610

    Article  PubMed  CAS  Google Scholar 

  • Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523

    Article  PubMed  CAS  Google Scholar 

  • Stauffer CE, Etson D (1969) The effect on subtilisin activity of oxidizing a methionine residue. J Biol Chem 244:5333–5338

    PubMed  CAS  Google Scholar 

  • Sumitomo N, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of the gene for an alkaline endoglucanase from an alkalophilic Bacillus and its expression in Escherichia coli and Bacillus subtilis. Biosci Biotechnol Biochem 56:872–877

    Article  PubMed  CAS  Google Scholar 

  • Sumitomo N, Ozaki K, Hitomi J, Kawaminami S, Kobayashi T, Kawai S, Ito S (1995) Application of the upstream region of a Bacillus endoglucanase gene to high-level expression of foreign genes in Bacillus subtilis. Biosci Biotechnol Biochem 59:2172–2175

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ito N, Yuuki T, Yamagata H, Udaka S (1989) Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J Biol Chem 264:18933–18938

    PubMed  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  • Terada I, Kwan ST, Miyata Y, Matsuzawa H, Ohta T (1990) Unique precursor structure of an extracellular protease, aqualysin I, with NH2− and COOH−terminal pro-sequences and its processing in Escherichia coli. J Biol Chem 265:6576–6581

    PubMed  CAS  Google Scholar 

  • van der Laan HM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners LJ, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease PB92 from Bacillus alkalophilus. Protein Eng 5:405–411

    Article  PubMed  Google Scholar 

  • van Ee JH (1991) A new more (bleach) stable low temperature high alkaline detergent protease. Comun J Con Esp Deterg 22:67–82

    CAS  Google Scholar 

  • Varrot A, Schülein M, Davies GJ (2000) Insight into ligand-induced conformational change in Cel5A from Bacillus agaradhaerens revealed by a catalytically active crystal form. J Mol Biol 297:819–828

    Article  PubMed  CAS  Google Scholar 

  • Varrot A, Schulein M, Fruchard S, Driguez H, Davies GJ (2001) Atomic resolution structure of endoglucanase Cel5A in complex with methyl 4, 4II, 4III, 4IV-tetrathio-α-cellopentoside highlights the alternative binding modes targeted by substrate mimics. Acta Crystallogr D Biol Crystallogr 57:1739–1742

    Article  PubMed  CAS  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  PubMed  CAS  Google Scholar 

  • Wells JA, Powers DB, Bott RR, Graycar TP, Estell DA (1987) Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci USA 84:1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Wolff AM, Showell MS (1997) Application of lipases on detergents. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 93–106

    Google Scholar 

  • Yamane T, Kani T, Hatanaka T, Suzuki A, Ashida T, Kobayashi T, Ito S, Yamashita O (1995) Structure of a new alkaline serine protease (M-protease) from Bacillus sp. KSM-K16. Acta Crystallogr D Biol Crystallogr 51:199–206

    Article  PubMed  CAS  Google Scholar 

  • Yoshimatsu T, Ozaki K, Shikata S, Ohta Y, Koike K, Kawai S, Ito S (1990) Purification and characterization of alkaline endo-1, 4-β-glucanases from alkalophilic Bacillus sp. KSM-635. J Gen Microbiol 136:1973–1979

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this entry

Cite this entry

Ito, S. (2011). Alkaline Enzymes in Current Detergency. In: Horikoshi, K. (eds) Extremophiles Handbook. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53898-1_12

Download citation

Publish with us

Policies and ethics