Alkaline Enzymes in Current Detergency

  • Susumu Ito

Various enzymes are widely used in industrial fields such as detergent, food, and feed production; leather and textile processing; pharmaceutical production; diagnostics; and waste management. The largest world market for industrial enzymes is the detergent industry. Detergent enzymes account for approximately 30–40% of the total worldwide enzyme production except for diagnostic and therapeutic enzymes. Alkaline enzymes, such as protease, α-amylase, cellulase (endo-1,4-β-glucanase), mannanase and lipase, are incorporated into heavy-duty laundry and dishwashing detergents (Ito et al. 1998; Horikoshi 1999). Most of the alkaline enzymes for detergents were first found by Horikoshi between the 1960s and 1980s. Owing to his discovery of the world of alkaliphiles, detergents containing such alkaline enzymes have been expanded worldwide and established their importance and necessity in the detergent industry.

In 1959, the first detergent that contained a bacterial protease appeared on the...


Alkaline Protease Catalytic Triad Alkaliphilic Bacillus Alkaline Serine Protease Alkaline Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aehle W (1997) Development of new amylases. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 213–229Google Scholar
  2. Ara K, Igarashi K, Saeki K, Kawai S, Ito S (1992) Purification and some properties of an alkaline pullulanase from alkalophilic Bacillus sp. KSM-1876. Biosci Biotechnol Biochem 56:62–65CrossRefGoogle Scholar
  3. Ara K, Saeki K, Ito S (1993) Purification and characterization of an alkaline isoamylase from an alkalophilic strain of Bacillus. J Gen Microbiol 139:781–786Google Scholar
  4. Ara K, Saeki K, Igarashi K, Takaiwa M, Uemura T, Hagihara H, Kawai S, Ito S (1995) Purification and characterization of an alkaline amylopullulanase with both α-1, 4 and α-1, 6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378. Biochim Biophys Acta 1243:315–324PubMedCrossRefGoogle Scholar
  5. Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline proteinase SavinaseTM from Bacillus lentus at 1.4 Å resolution. J Mol Biol 223:427–445PubMedCrossRefGoogle Scholar
  6. Bott R, Ultsch M, Kossiakoff A, Graycar T, Katz B, Power S (1988) The three-dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 Å and analysis of the structural consequence of peroxide inactivation. J Biol Chem 263:7895–7906PubMedGoogle Scholar
  7. Boyer EW, Ingle MB (1972) Extracellular alkaline amylase from a Bacillus species. J Bacteriol 110:992–1000PubMedGoogle Scholar
  8. Bryan PN (2000) Protein engineering of subtilisin. Biochim Biophys Acta 1543:203–222PubMedCrossRefGoogle Scholar
  9. Buisson GE, Duée R, Haser R, Pyan F (1987) Three dimensional structure of porcine α-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J 6:3909–3916PubMedGoogle Scholar
  10. Davies GJ, Dauter M, Brzozowski M, Bjornvad ME, Andersen KV, Schülein M (1998) Structure of the Bacillus agaradherens family 5 endoglucanase at 1.6 Å and its cellobiose complex at 2.0 Å resolution. Biochemistry 37:1926–1932PubMedCrossRefGoogle Scholar
  11. Davies GJ, Brzozowski AM, Dauter Z, Rasmussen MD, Borchert TV, Wilson KS (2005) Structure of Bacillus halmapalus family 13 α-amylase, BHA, in complex with a acarbose-derived nonasaccharide at 2.1 Å resolution. Acta Crystallogr D Biol Crystallogr 61:190–193PubMedCrossRefGoogle Scholar
  12. Declerck N, Joyet P, Trosset JY, Garnier J, Gaillardin C (1995) Hyperthermostable mutants of Bacillus licheniformis α-amylase: multiple amino acid replacements and molecular modeling. Protein Eng 8:1029–1037PubMedCrossRefGoogle Scholar
  13. Declerck N, Machius M, Chambert R, Wiegand G, Huber R, Gaillardin C (1997) Hyperthermostable mutants of Bacillus licheniformis α-amylase; thermodynamic studies and structural interpretation. Protein Eng 10:541–549PubMedCrossRefGoogle Scholar
  14. Egmond MR (1997) Application of proteases in detergents. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 61–74Google Scholar
  15. Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521PubMedGoogle Scholar
  16. Fukumori F, Kudo T, Narahashi Y, Horikoshi K (1985) Purification and properties of a cellulose from alkalophilic Bacillus sp. no. 1139. J Gen Microbiol 131:3339–3345Google Scholar
  17. Fukumori F, Sashihara N, Kudo T, Horikoshi K (1986) Nucleotide sequences of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology. J Bacteriol 168:479–485PubMedGoogle Scholar
  18. Fukumori F, Kudo T, Sashihara N, Nagata Y, Ito K, Horikoshi K (1989) The third gene of alkalophilic Bacillus sp. strain N-4: evolutionary relationship within the cel gene family. Gene 76:289–298PubMedCrossRefGoogle Scholar
  19. Guntelberg AV, Ottesen M (1954) Purification of the proteolytic activity from Bacillus subtilis. C R Trav Lab Carlsberg 29:36–48Google Scholar
  20. Hagihara H, Hayashi Y, Endo K, Igarashi K, Ozawa T, Kawai S, Ozaki K, Ito S (2001a) Deduced amino-acid sequence of a calcium-free α-amylase from a strain of Bacillus. Implications from molecular modeling of high oxidation stability and chelator resistance of the enzyme. Eur J Biochem 268:3974–3982PubMedCrossRefGoogle Scholar
  21. Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitamura K, Ozaki K, Kawai S, Ito S (2001b) Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 6:71744–71750Google Scholar
  22. Hagihara H, Igarashi K, Hayashi H, Kitayama K, Endo K, Ozawa T, Ozaki K, Kawai S, Ito S (2002) Improvement of thermostability of a calcium-free α-amylase from an alkaliphilic Bacillus sp. by protein engineering. J Appl Glycosci 49:281–289CrossRefGoogle Scholar
  23. Hagihara H, Hatada Y, Ozawa T, Igarashi K, Araki H, Ozaki K, Kobayashi T, Kawai S, Ito S (2003) Oxidative stabilization of an alkaliphilic Bacillus α-amylase by replacing a single specific methionine residue by site-directed mutagenesis. J Appl Glycosci 50:367–372CrossRefGoogle Scholar
  24. Hakamada Y, Kobayashi T, Hitomi J, Kawai S, Ito S (1994) Molecular cloning and nucleotide sequence of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J Ferment Bioeng 78:105–108CrossRefGoogle Scholar
  25. Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1:151–156PubMedCrossRefGoogle Scholar
  26. Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai K, Kobayashi T, Ito S (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic Bacillus strain. Biosci Biotechnol Biochem 64:2281–2289PubMedCrossRefGoogle Scholar
  27. Hakamada Y, Hatada Y, Ozawa T, Ozaki K, Kobayashi T, Ito S (2001) Identification of thermostabilizing residues in a Bacillus alkaline cellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis. FEMS Microbiol Lett 195:67–72PubMedCrossRefGoogle Scholar
  28. Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1, 4 and α-1, 6 linkages in polysaccharides at different active sites. J Biol Chem 271:24075–24083PubMedCrossRefGoogle Scholar
  29. Hatada Y, Saito Y, Hagihara H, Ozaki K, Ito S (2001) Nucleotide and deduced amino acid sequences of an alkaline pullulanase from the alkaliphilic bacterium Bacillus sp. KSM-1876. Biochim Biophys Acta 1545:367–371PubMedCrossRefGoogle Scholar
  30. Hayashi T, Akiba T, Horikoshi K (1988) Production and purification of new maltohexaose-forming amylases alkalophilic Bacillus sp. H-167. Agric Biol Chem 52:443–448CrossRefGoogle Scholar
  31. Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, Horikoshi K (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Leeuwenhoek 89:211–219PubMedCrossRefGoogle Scholar
  32. Horikoshi K (1971a) Production of alkaline amylases by alkalophilic microorganisms. II. Alkaline amylase produced by Bacillus no. A-40-2. Agric Biol Chem 35:1783–1791CrossRefGoogle Scholar
  33. Horikoshi K (1971b) Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 36:1407–1414CrossRefGoogle Scholar
  34. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedGoogle Scholar
  35. Horikoshi K, Nakao M, Kurono Y, Sashihara N (1984) Cellulases of an alkalophilic Bacillus strain isolated from soil. Can J Microbiol 30:774–779CrossRefGoogle Scholar
  36. Igarashi K, Ara K, Saeki K, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of the gene that encodes a neopullulanase from an alkalophilic Bacillus. Biosci Biotechnol Biochem 56:514–516PubMedCrossRefGoogle Scholar
  37. Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T, Ara K, Ozaki K, Kawai S, Kobayashi T, Ito S (1998a) Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl Environ Microbiol 64:3282–3289PubMedGoogle Scholar
  38. Igarashi K, Hatada Y, Ikawa K, Araki H, Ozawa T, Kobayashi T, Ozaki K, Ito S (1998b) Improved thermostability of a Bacillus α-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem Biophys Res Commun 248:372–377PubMedCrossRefGoogle Scholar
  39. Igarashi K, Ozawa T, Ikawa-Kitayama K, Hayashi Y, Araki H, Endo K, Hagihara H, Ozaki K, Kawai S, Ito S (1999) Thermostabilization by proline substitution in an alkaline, liquefying α-amylase from Bacillus sp. strain KSM-1378. Biosci Biotechnol Biochem 63:1535–1540PubMedCrossRefGoogle Scholar
  40. Ikawa K, Araki H, Tsujino Y, Hayashi Y, Igarashi K, Hatada Y, Hagihara H, Ozawa T, Ozaki K, Kobayashi T, Ito S (1998) Hyperexpression of the gene for a Bacillus α-amylase in Bacillus subtilis cells; enzymatic properties and crystallization of the recombinant enzyme. Biosci Biotechnol Biochem 62:1720–1725PubMedCrossRefGoogle Scholar
  41. Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281CrossRefGoogle Scholar
  42. Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190PubMedCrossRefGoogle Scholar
  43. Ito S, Hatada Y, Ozawa T, Hagihara H, Araki H, Tsujino Y, Kitayama K, Igarashi K, Kageyama Y, Kobayashi T, Ozaki K (2002) Protein-engineered Bacillus α-amylases that have acquired both enhanced thermostability and chelator resistance. J Appl Glycosci 49:257–264CrossRefGoogle Scholar
  44. Joyet P, Declerck N, Gaillardin C (1992) Hyperthermostable variants of highly thermostable alpha-amylase. Biotechnology 10:1579–1583PubMedCrossRefGoogle Scholar
  45. Kageyama Y, Takaki Y, Shimamura S, Nishi S, Nogi Y, Uchimura K, Kobayashi T, Hitomi J, Ozaki K, Kawai S, Ito S, Horikoshi K (2007) Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus calusii spp. Extremophiles 11:597–603PubMedCrossRefGoogle Scholar
  46. Kanai R, Haga K, Akiba T, Yamane K, Harata K (2004) Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056PubMedCrossRefGoogle Scholar
  47. Kawaminami S, Ozaki K, Sumitomo N, Hayashi Y, Ito S, Shimada I, Arata Y (1994) A stable isotope-aided NMR study of the active site of an endoglucanase from a strain of Bacillus. J Biol Chem 269:28752–28756PubMedGoogle Scholar
  48. Kawaminami S, Takahashi H, Ito S, Arata Y, Shimada I (1999) A multinuclear NMR study of the active site of an endoglucanase from a strain of Bacillus: use of Trp residues as structural probes. J Biol Chem 274:19823–19828PubMedCrossRefGoogle Scholar
  49. Kim DW, Matsuzawa H (2000) Requirement for the COOH-terminal pro-sequence in the translocation of aqualysin I across the cytoplasmic membrane in Escherichia coli. Biochem Biophys Res Commun 277:216–220PubMedCrossRefGoogle Scholar
  50. Kim TU, Goo BG, Jing JY, Bun SM, Shin YC (1995) Purification and characterization of maltotetraose-forming alkaline α-amylase from an alkalophilic Bacillus strain, GM8901. Appl Environ Microbiol 61:3105–3112PubMedGoogle Scholar
  51. Kim DW, Lin SJ, Morita S, Terada I, Matsuzawa H (1997) A carboxy-terminal pro-sequence of aqualysin I prevents proper folding of the protease domain on its secretion by Saccharomyces cerevisiae. Biochem Biophys Res Commun 231:535–539PubMedCrossRefGoogle Scholar
  52. Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkaliphilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481PubMedCrossRefGoogle Scholar
  53. Kobayashi T, Hakamada Y, Hitomi J, Koike K, Ito S (1996) Purification of alkaline proteases from a Bacillus strain and their possible interrelationship. Appl Microbiol Biotechnol 45:63–71PubMedCrossRefGoogle Scholar
  54. Kobayashi T, Kageyama Y, Sumitomo N, Saeki K, Shirai T, Ito S (2005) Contribution of a salt bridge triad to the thermostability of a highly alkaline protease from an alkaliphilic Bacillus strain. World J Microbiol Biotechnol 21:961–967CrossRefGoogle Scholar
  55. Kottwitz B, Upadek H (1997) Application of cellulases that contribute to color revival and softening. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 133–148Google Scholar
  56. Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13:179–191PubMedCrossRefGoogle Scholar
  57. Lyublinskaya LA, Belyaev SV, Strongin AYA, Matyash LF, Levin ED, Stepanov VM (1974) A new chromogenic substrate for subtilisin. Anal Biochem 62:371–376CrossRefGoogle Scholar
  58. MacGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405CrossRefGoogle Scholar
  59. Machius M, Deckerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis α-amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292PubMedCrossRefGoogle Scholar
  60. Manning GB, Campbell LL (1961) Thermostable α-amylase of Bacillus stearotherophilus. J Biol Chem 236:2952–2957PubMedGoogle Scholar
  61. Markland FS, Smith EL (1971) Subtilisins: primary structure, chemical and physical properties. In: Boyer RD (ed) The enzymes, 3rd edn. Academic, New York/London, pp 561–608Google Scholar
  62. Maurer KL (1997) Development of new cellulases. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 175–202Google Scholar
  63. Misset O (1997) Development of new lipases. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 107–131Google Scholar
  64. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SOCP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedGoogle Scholar
  65. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761CrossRefGoogle Scholar
  66. Nogi Y, Takami H, Horikoshi K (2005) Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55:2309–2315PubMedCrossRefGoogle Scholar
  67. Nonaka T, Fujihashi M, Kita A, Hagihara H, Ozaki K, Ito S, Miki K (2003) Crystal structure of calcium-free α-amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J Biol Chem 278:24818–24824PubMedCrossRefGoogle Scholar
  68. Nonaka T, Hujihashi M, Kita A, Saeki K, Ito S, Horikoshi K, Miki K (2004) The crystal structure of an oxidatively stable subtilisin-like alkaline serine protease, KP-43, with a C-terminal α-barrel domain. J Biol Chem 279:47344–47351PubMedCrossRefGoogle Scholar
  69. Okoshi H, Ozaki K, Shikata S, Oshino K, Kawai S, Ito S (1990) Purification and characterization of multiple carboxymethyl cellulases from Bacillus sp. KSM-522. Agric Biol Chem 54:83–89CrossRefGoogle Scholar
  70. Ozaki K, Shikata S, Kawai S, Ito S, Okamoto K (1990) Molecular cloning and nucleotide sequence of a gene for alkaline cellulase from Bacillus sp. KSM-635. J Gen Microbiol 136:1327–1334PubMedGoogle Scholar
  71. Ozaki K, Hayashi Y, Sumitomo N, Kawai S, Ito S (1995) Construction, purification, and properties of a truncated alkaline endoglucanase from Bacillus sp. KSM-635. Biosci Biotechnol Biochem 59:1613–1618PubMedCrossRefGoogle Scholar
  72. Ozawa T, Hakamada Y, Hatada Y, Kobayashi T, Shirai T, Ito S (2001) Thermostabilization of replacing of specific residues with lysine in a Bacillus alkaline cellulase: building a structural model and implication of newly formed double intrahelical salt bridges. Protein Eng 14:501–504PubMedCrossRefGoogle Scholar
  73. Ozawa T, Igarashi K, Ozaki K, Kobayashi T, Suzuki A, Shirai T, Yamane T, Ito S (2006) Molecular modeling and implications of a Bacillus α-amylase that acquires enhanced thermostability and chelator resistance by deletion of an arginine-glycine residue. J Appl Glycosci 53:193–197CrossRefGoogle Scholar
  74. Ozawa T, Endo K, Igarashi K, Kitayama K, Hayashi Y, Hagihara H, Kawai S, Ito S, Ozaki K (2007) Improvement of the thermal stability of a calcium-free, alkaline α-amylase by site-directed mutagenesis. J Appl Glycosci 54:77–83CrossRefGoogle Scholar
  75. Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K (2000) Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic Bacillus spp.: enzymatic properties, sequences, and evolutionary relationships. Biochem Biophys Res Commun 279:313–319PubMedCrossRefGoogle Scholar
  76. Saeki K, Hitomi J, Okuda M, Hatada Y, Kageyama Y, Takaiwa M, Kubota H, Hagihara H, Kobayashi T, Kawai S, Ito S (2002) A novel species of alkaliphilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 6:65–72PubMedCrossRefGoogle Scholar
  77. Saito N (1973) A thermostable extracellular α-amylase from Bacillus licheniformis. Arch Biochem Biophys 155:290–298PubMedCrossRefGoogle Scholar
  78. Shaw A, Bott R, Vonrhein C, Bricogne G, Power S, Day AG (2002) A novel combination of two classic catalytic schemes. J Mol Biol 320:303–309PubMedCrossRefGoogle Scholar
  79. Shikata S, Saeki K, Okoshi H, Yoshimatsu T, Ozaki K, Kawai S, Ito S (1990) Alkaline cellulases for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes. Agric Biol Chem 54:91–96CrossRefGoogle Scholar
  80. Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the high-alkaline adaptation mechanism. Protein Eng 10:627–634PubMedCrossRefGoogle Scholar
  81. Shirai T, Ishida H, Noda J, Yamane T, Ozaki K, Hakamada Y, Ito S (2001) Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol 310:1079–1108PubMedCrossRefGoogle Scholar
  82. Shirai T, Igarashi K, Ozawa T, Hagihara H, Kobayashi T, Ozaki K, Ito S (2007) Ancestral sequence evolutionary trace and crystal structure analyses of alkaline α-amylase from Bacillus sp. KSM-1378 to clarify the alkaline adaptation process of proteins. Proteins 66:600–610PubMedCrossRefGoogle Scholar
  83. Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523PubMedCrossRefGoogle Scholar
  84. Stauffer CE, Etson D (1969) The effect on subtilisin activity of oxidizing a methionine residue. J Biol Chem 244:5333–5338PubMedGoogle Scholar
  85. Sumitomo N, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of the gene for an alkaline endoglucanase from an alkalophilic Bacillus and its expression in Escherichia coli and Bacillus subtilis. Biosci Biotechnol Biochem 56:872–877PubMedCrossRefGoogle Scholar
  86. Sumitomo N, Ozaki K, Hitomi J, Kawaminami S, Kobayashi T, Kawai S, Ito S (1995) Application of the upstream region of a Bacillus endoglucanase gene to high-level expression of foreign genes in Bacillus subtilis. Biosci Biotechnol Biochem 59:2172–2175PubMedCrossRefGoogle Scholar
  87. Suzuki Y, Ito N, Yuuki T, Yamagata H, Udaka S (1989) Amino acid residues stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J Biol Chem 264:18933–18938PubMedGoogle Scholar
  88. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780PubMedGoogle Scholar
  89. Terada I, Kwan ST, Miyata Y, Matsuzawa H, Ohta T (1990) Unique precursor structure of an extracellular protease, aqualysin I, with NH2− and COOH−terminal pro-sequences and its processing in Escherichia coli. J Biol Chem 265:6576–6581PubMedGoogle Scholar
  90. van der Laan HM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners LJ, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease PB92 from Bacillus alkalophilus. Protein Eng 5:405–411PubMedCrossRefGoogle Scholar
  91. van Ee JH (1991) A new more (bleach) stable low temperature high alkaline detergent protease. Comun J Con Esp Deterg 22:67–82Google Scholar
  92. Varrot A, Schülein M, Davies GJ (2000) Insight into ligand-induced conformational change in Cel5A from Bacillus agaradhaerens revealed by a catalytically active crystal form. J Mol Biol 297:819–828PubMedCrossRefGoogle Scholar
  93. Varrot A, Schulein M, Fruchard S, Driguez H, Davies GJ (2001) Atomic resolution structure of endoglucanase Cel5A in complex with methyl 4, 4II, 4III, 4IV-tetrathio-α-cellopentoside highlights the alternative binding modes targeted by substrate mimics. Acta Crystallogr D Biol Crystallogr 57:1739–1742PubMedCrossRefGoogle Scholar
  94. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643PubMedCrossRefGoogle Scholar
  95. Wells JA, Powers DB, Bott RR, Graycar TP, Estell DA (1987) Designing substrate specificity by protein engineering of electrostatic interactions. Proc Natl Acad Sci USA 84:1219–1223PubMedCrossRefGoogle Scholar
  96. Wolff AM, Showell MS (1997) Application of lipases on detergents. In: van Ee JH, Misset O, Baas EJ (eds) Enzymes in detergency. Marcel Dekker, New York, pp 93–106Google Scholar
  97. Yamane T, Kani T, Hatanaka T, Suzuki A, Ashida T, Kobayashi T, Ito S, Yamashita O (1995) Structure of a new alkaline serine protease (M-protease) from Bacillus sp. KSM-K16. Acta Crystallogr D Biol Crystallogr 51:199–206PubMedCrossRefGoogle Scholar
  98. Yoshimatsu T, Ozaki K, Shikata S, Ohta Y, Koike K, Kawai S, Ito S (1990) Purification and characterization of alkaline endo-1, 4-β-glucanases from alkalophilic Bacillus sp. KSM-635. J Gen Microbiol 136:1973–1979Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Bioscience and BiotechnologyUniversity of the RyukyusNishihara-choJapan

Personalised recommendations