Advertisement

Beta-Cyclomaltodextrin Glucanotransferase of a Species of Alkaliphilic Bacillus for the Production of Beta-Cyclodextrin

  • Nobuyuki Nakamura
Reference work entry

Isolation of Alkaliphilic Bacteria Producing β-CGTases

Cyclomaltodextrin glucanotransferase (CGTase) [systematic name:1,4-α- d- glucan 4-α-d-(1,4-α-d-glucano)-transferase (cyclizing)], which is also called as cyclodextrin glycosyltransferase or cyclomaltodextrin glycosyltransferase, is a member of the α-amylase superfamily and belongs to the transferase group of enzymes (EC.2.4.1.19). This enzyme catalyzes the intramolecular transglycosylation to form cyclodextrins (CDs), which are nonreducing and cyclic maltooligosaccharides composed of 6–12 glucose molecules linked by the α-1,4-glucopyranosidic linkage, from starch and related carbohydrates (French 1957, 1962; Thoma and Stewwart 1965; Pulley and French 1961). Major products obtained from starch by the enzyme action are cyclomalto-hexaose (α-CD), -heptaose (β-CD), and -octaose (γ-CD), and larger CDs (δ-, ε-, ζ-, η-CD, and so on) are also formed during the reaction as minor products (French et al. 1965). Small amounts of...

Keywords

Crude Enzyme Potato Starch Active Charcoal Beverage Industry Starch Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdullah M, French D (1970) Substrate specificity of pullulanase. Arch Biochem Biophys 137:483–493PubMedCrossRefGoogle Scholar
  2. Abelyan VA, Yamamoto T, Afrikyan EG (1994a) Isolation and characterization of cyclodextrin glucanotransferase using cyclodextrin polymers and their derivatives. Biochemistry 59:573–579, Engl TrGoogle Scholar
  3. Abelyan VA, Yamamoto T, Afrikyan EG (1994b) On the mechanism of action of cyclomaltodextrin glucanotransferase of alkalophilic, thermophilic, and mesophilic microorganisms. Biochemistry 59:839–844, Engl TrGoogle Scholar
  4. Abudullah M, French D (1966) Reversible action of pullulanase. Nature 210:200CrossRefGoogle Scholar
  5. Astray G, Barreiro CG, Mejuto JC, Otero RR, Gandara JS (2009) A review on the use of cyclodextrins in foods. Food Hydrocolloids 23:1631–1640CrossRefGoogle Scholar
  6. Bender H (1977) Cyclodextrin-glucanotransferase von Klebsiella pneumoniae. Arch Mikrobiol 111:271–282Google Scholar
  7. Bender H (1986) Production, characterization and application of cyclodextrins. In: Liss AR (ed) Advances in biotechnological processes 6. Wiley, New York, pp 31–71Google Scholar
  8. Bender ML, Komiyama M (1978) Cyclodextrin chemistry. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  9. Brewster ME, Loftson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666PubMedCrossRefGoogle Scholar
  10. Cramer F (1951) Über Einschlussverbindungen, I. Mitteil. Addition-verbindungen der cycloamylose. Chem Ber 84:851–852CrossRefGoogle Scholar
  11. Cramer F, Hettler H (1967) Inclusion compounds of cyclodextrins. Naturwissenschaften 54:625–632PubMedCrossRefGoogle Scholar
  12. Depinto JA, Campbell LL (1968) Purification and properties of the amylase of Bacillus macerans. Biochemistry 7:114–120PubMedCrossRefGoogle Scholar
  13. Duchene D (1987) Cyclodextrins and their industrial uses. Editions de Sante, ParisGoogle Scholar
  14. Duchene D (1991) New trends in cyclodextrins and derivatives. Editions de Sante, ParisGoogle Scholar
  15. French D (1957) The Schardinger dextrins. Adv Carbohydr Chem 12:189–260PubMedCrossRefGoogle Scholar
  16. French D (1962) Cyclodextrin transglycosylase (BACILLUS MACERANS AMYLASE). In: Collowick SP, Kaplan NO (eds) Methods in enzymology 5. Academic, New York, pp 148–155Google Scholar
  17. French D, Levine MI, Norberg E, Norden P, Pazur JH, Wild GM (1954) Studies on the Schardinger dextrins VII. Co-substrate specificity in coupling reactions of Macerans amylase. J Am Chem Soc 76:2387–2390CrossRefGoogle Scholar
  18. French D, Pulley AO, Whelan WJ (1963) Preparation of Schardinger dextrins on a larger-than-laboratory scale. Die Stärke 8:280–284CrossRefGoogle Scholar
  19. French D, Pulley AO, Effenberger JA, Rougvie MA, Abdullah M (1965) Studies on the Schardinger dextrins. XII. The molecular size and structure of the delta-, epsilon-, zeta-, and eta-dextrins. Arch Biochem Biophys 111:153–160PubMedCrossRefGoogle Scholar
  20. Fukunaga Y, Miyata T, Nakayasu N, Mizutani K, Kasai R, Tanaka O (1989) Enzymic transglucosylation products of steviosides: separation and sweetness- evaluation. Agric Biol Chem 53:1603–1607CrossRefGoogle Scholar
  21. Georganta G, Kaneko T, Nakamura N, Kudo T, Horikoshi K (1993) Isolation and partial properties of cyclomaltodextrin glucanotransferase-producing alkaliphilic Bacillus sp from a deep sea mud sample. Starch/staerke 43:361–363CrossRefGoogle Scholar
  22. Horikoshi K (1971) Production of alkaline enzymes part II. Alkaline amylase produced by Bacillus No.A-40–2. Agric Biol Chem 35:1783–1791CrossRefGoogle Scholar
  23. Horikoshi K (1979) Production and industrial applications of β-cyclodextrin. Process Biochem 6:26–30Google Scholar
  24. Horikoshi K (2006) Alkaliphiles: genetic properties and applications of enzymes. Kodansha, TokyoGoogle Scholar
  25. Jung SW, Kim TK, Lee KW, Lee YH (2007) Catalytic properties of β-cyclodextrin glucanotransferase from alkalophilic Bacillus sp.BL-12 and intermolecular transglycosylation of stevioside. Biotechnol Bioprocess Eng 12:207–212CrossRefGoogle Scholar
  26. Kaneko T, Hamamoto T, Horikoshi K (1988) Molecular cloning and nucleotide sequence of the cyclomaltodextrin glucanotransferase gene from the alkalophilic Bacillus sp. strain No. 38–2. J Gen Microbiol 134:97–105PubMedGoogle Scholar
  27. Kaneko T, Song KB, Hamamoto T, Kudo T, Horikoshi K (1989) Construction of a chimeric series of Bacillus cyclomaltodextrin glucanotransferases and analysis of the thermal stabilities and pH optima of the enzymes. J Gen Microbiol 135:3447–3457PubMedGoogle Scholar
  28. Kato T, Horikoshi K (1986) A new γ-cyclodextrin forming enzyme produced by Bacillus subtilis no.313. J Jpn Soc Starch Sci 34:137–143CrossRefGoogle Scholar
  29. Kim Y, Lee Y, Choi K, Uchida K, Suzuki Y (2001) Transglycosylation to ginseng saponins by cyclomaltodextrin glucanotransferase. Biosci Biotechnol Biochem 65:875–883PubMedCrossRefGoogle Scholar
  30. Kimura K, Takano T, Yamane K (1987) Molecular cloning of the β-cyclodextrin synthase gene from an alkaliphilic Bacillus and its expression in Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 26:147–153CrossRefGoogle Scholar
  31. Kitahata S (1995) Cyclomaltodextrin glucanotransferase. In: Amylase Research Society of Japan (ed) Enzyme chemistry and molecular biology of amylase and related enzymes. CRC Press, Tokyo, pp 6–17Google Scholar
  32. Kitahata S (2000) Studies on the development of functional oligosaccharides using amylases and related enzymes. J Appl Glycosci 47:87–97CrossRefGoogle Scholar
  33. Kitahata S, Okada S (1974) Action of cyclodextrin glycosyltransferase from Bacillus megaterium strain No. 5 on starch. Agric Biol Chem 38:2413–2417CrossRefGoogle Scholar
  34. Kitahata S, Okada S (1982) Comparison of actions of cyclodextrin glucanotransferase from B.megaterium, B.circulans, B.stearothermophilus and B.macerans. J Jpn Soc Starch Sci 29:13–18CrossRefGoogle Scholar
  35. Kitahata S, Tsuyama N, Okada S (1974) Purification and some properties of cyclodextrin glycosyltransferase from a strain of Bacillus species. Agric Biol Chem 38:387–393CrossRefGoogle Scholar
  36. Kitahata S, Hara K, Fujita K, Nakano H, Kuwahara N, Koizumi K (1992) Acceptor specificity of cyclodextrin glycosyltransferase from Bacillus stearothermophilus and synthesis of α-D-glucosyl-O-β-galactosyl-(1→4)-β-D-glucoside. Biosci Biotechnol Biochem 56:1386–1391PubMedCrossRefGoogle Scholar
  37. Kobayashi S (1996) Cyclodextrin producing enzyme (CGTase). In: Park KH, Robyt JF, Choi YD (eds) Enzymes for carbohydrate engineering. Elsvier, Amsterdam, pp 23–41CrossRefGoogle Scholar
  38. Kobayashi S, Kainuma K, Suzuki S (1977) Preparation of alpha-branched and hydroxyethyl cyclodextrins in the presence of sodium dedecyl sulfate. Nippon Nog Kag Kai 51:691–698CrossRefGoogle Scholar
  39. Kobayashi S, Shibuya N, Young BM, French D (1984) The preparation of 6-O-alpha-glucopyranosylcyclohexaamylose. Carbohydr Res 126:215–224CrossRefGoogle Scholar
  40. Kometani T, Terada Y, Nakae T, Takii H, Okada S (1994) Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glucosides. Biosci Biotechnol Biochem 58:1990–1994CrossRefGoogle Scholar
  41. Kometani T, Nishimura T, Nakae T, Takii H, Okada S (1996) Synthesis of neohesperidin glycosides and naringin glycosides by cyclodextrin glucanotransferase from an alkalophilic Bacillus species. Biosci Biotechnol Biochem 60:645–649PubMedCrossRefGoogle Scholar
  42. Kubota M, Sawatani I, Oku K, Takeuchi K, Murai S (2004) The development of alpha, alpha-trehalose production and its applications. J Appl Glycosci 51:63–70CrossRefGoogle Scholar
  43. Lane AG, Pirt SJ (1971) Production of cyclodextrin glycosyltransferase by Bacillus macerans in batch cultures. J Appl Chem Biotechnol 21:330–334CrossRefGoogle Scholar
  44. Li Z, Wang M, Wang F, Gu Z, Du G, Wu J, Chen J (2007) γ-Cyclodextrin: a review on enzymatic production and applications. Appl Microbiol Biotechnol 77:245–255PubMedCrossRefGoogle Scholar
  45. Loftsson T, Duchen D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329:1–11PubMedCrossRefGoogle Scholar
  46. Mahat MK, IIIias RM, Rahman RA, Rashid NA, Mahmood NAN, Hassan O, Aziz SA, Kamaruddin K (2004) Production of cyclodextrin glucanotransferase(CGTase) from alkalophilic Bacillus sp.TS1-1: media optimization using experimental design. Enzyme Microb Technol 35:467–473CrossRefGoogle Scholar
  47. Maitani T, Akiyama T, Sato K (2001) Natural food additives given new function by enzymatic reaction. Shokuhin Eiseigaku Zasshi 42:343–353PubMedCrossRefGoogle Scholar
  48. Martins RF, Hatti-Kaul R (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterization. Enzyme Microb Technol 30:116–124CrossRefGoogle Scholar
  49. Martins RF, Davis W, Abu W, Al-Soud A, Levander F, Radstrom P, Hatti-Kaul R (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144PubMedCrossRefGoogle Scholar
  50. Matsuzawa M, Kawano M, Nakamura N, Horikoshi K (1975) An improved method for the preparation of Schardinger β-dextrin on an industrial scale by cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp(ATCC21783). Die Stärke 27:410–413CrossRefGoogle Scholar
  51. Mori S, Hirose S, Oya T, Kitahata S (1994) Purification and properties of cyclodextrin glucanotransferase from Brevibacterium sp.No.9605. Biosci Biotechnol Biochem 58:1968–1972CrossRefGoogle Scholar
  52. Nakagawa Y, Takada M, Ogawa K, Hatada Y, Horikoshi K (2006) Site-directed mutations in alanine 223 and Glycine 255 in the acceptor site of gamma-cyclodextrin glucanotransferase from alkalophilic Bacillus clarkii 7364 affect cyclodextrin production. J Biochem (Tokyo) 140:329–336CrossRefGoogle Scholar
  53. Nakamura N, Horikoshi K (1976a) Characterization and some cultural conditions of a cyclodextrin glycosyltransferase-producing alkalophilic Bacillus sp. Agric Biol Chem 40:753–757CrossRefGoogle Scholar
  54. Nakamura N, Horikoshi K (1976b) Purification and properties of cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Agric Biol Chem 40:935–941CrossRefGoogle Scholar
  55. Nakamura N, Horikoshi K (1976c) Characterization of acid-cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Agric Biol Chem 40:1647–1648CrossRefGoogle Scholar
  56. Nakamura N, Horikoshi K (1976d) Purification and properties of neutral-cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Agric Biol Chem 40:1785–1791CrossRefGoogle Scholar
  57. Nakamura N, Horikoshi K (1977) Production of schardinger β-dextrin by soluble and immobilized cyclodextrin glycosyltransferase of an akkalophilic Bacillus sp. Biotechnol Bioeng XIX:87–99CrossRefGoogle Scholar
  58. Nomoto M, Shew DC, Chen SJ, Yen TM, Liao GW, Yang CP (1984) Cyclodextrin glucanotransferase from alkalophilic bacterium of Taiwan. Agric Biol Chem 48:1337–1338CrossRefGoogle Scholar
  59. Nomoto M, Chen CC, Shew DC (1986) Purification and characterization of cyclodextrin glucanotransferase from an alkalophilic bacterium of Taiwan. Agric Biol Chem 50:2701–2707CrossRefGoogle Scholar
  60. Parsiegla G, Schmid AK, Shluz GE (1998) Substrate binding to a cyclodextrin glycosyltransferase and mutations increasing the γ-cyclodextrin production. Eur J Biochem 255:710–717PubMedCrossRefGoogle Scholar
  61. Pereira JL, Moreno RA, Arderin JF (1985) Reference interval for serum alpha-amylase determined with p-nitrophenyl-alpha-D-maltoheptaoside as a substrate. J Clin Chem Clin Biochem 23:861–863Google Scholar
  62. Pulley AO, French D (1961) Studies on the Schardinger dextrins The isolation of new Schardinger dextrins. Biochem Biophys Res Commun 5:11–15PubMedCrossRefGoogle Scholar
  63. Qingsheng Q, Zimmerman W (2005) Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol 66:475–485CrossRefGoogle Scholar
  64. Rendleman JA Jr (1999) The production of cyclodextrins using CGTase from Bacillus macerans. In: Bucke C (ed) Methods in biotechnology 10. Carbohydrate biotechnology protocols. Humana Press, Totowa, pp 89–101CrossRefGoogle Scholar
  65. Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Ed Engl 19:344–362CrossRefGoogle Scholar
  66. Schardinger F (1903) Über Thermophile Bakterien aus vershiedenen Speisen und Milch, sowie über einige Umsetzungsprodukte derselben in kohlenhydrathaltigen Nährlösungen, darunter krystallisierte Polysaccharide(Dextrine) aus Stärke. Z Unters Nahr Genussm 6:865–880CrossRefGoogle Scholar
  67. Schwimmer S, Garibaldi JA (1952) Further studies on the production, purification and properties of the Schardinger dextrinogenase of Bacillus macerans. Cereal Chem 29:108–122Google Scholar
  68. Shiraishi T, Kusano S, Tsuyama Y, Sakano Y (1989) Synthesis of maltosyl(α1, 6)cyclodextrins through the reverse reaction of thermostable Bacillus acidopullulyticus pullulanases. Agric Biol Chem 53:2181–2188CrossRefGoogle Scholar
  69. Suzuki Y, Suzuki K (1991) Enzymatic formation of 4G-α-D-glucopyranosyl-rutin. Agric Biol Chem 55:181–187PubMedCrossRefGoogle Scholar
  70. Szejtli J (1988) Cyclodextrin technology. Kluwer, DordrechtGoogle Scholar
  71. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753PubMedCrossRefGoogle Scholar
  72. Szejtli J (2004) Past, present, and future of cyclodextrin research. Pure Appl Chem 76:1825–1845CrossRefGoogle Scholar
  73. Takada M, Nakagawa Y, Yamamoto T (2003) Biochemical and genetic analysis of a novel γ-cyclodextrin glucanotransferase from an alkalophilic Bacillus clarkii 7364. J Biochem (Tokyo) 133:317–324CrossRefGoogle Scholar
  74. Terada Y, Yanase M, Takata H, Takaha T, Okada S (1997) Cyclodextrins are not the major cyclic alpha-1, 4-glucans produced by the initial action of cyclodextrin glucanotransferase on amylase. J Biol Chem 2720:15729–15733CrossRefGoogle Scholar
  75. Terada Y, Sanbe H, Takaha T, Kitahata S, Koizumi K, Okada S (2001) Comparative study of the cyclization reactions of three bacterial cyclomaltodextrin glucanotransferases. Appl Environ Microbiol 67:1453–1460PubMedCrossRefGoogle Scholar
  76. Thoma JA, Stewwart L (1965) Starch. In: Whisler RL, Paschall EF (eds) Chemistry and technology 1. Academic, New York, pp 209–249Google Scholar
  77. Tilden EB, Hudson CS (1939) The conversion of starch to crystalline dextrins by the action of a new type of amylase separated from cultures of Aerobacillus macerans. J Am Chem Soc 61:2900–2902CrossRefGoogle Scholar
  78. Tilden EB, Hudson CS (1942) Preparation and properties of amylases produced by Bacillus macerans and Bacillus polymixa. J Bacteriol 43:527–544PubMedGoogle Scholar
  79. Villiers A (1891) Sur la transformation de la fecule en dextrine par fermente butyrique. C R Acad Sci Paris 112:536–538Google Scholar
  80. Wallenfels K, Foldi P, Niermann H, Bender H, Linder D (1978) The enzymic synthesis by transglucosylation of a homologous series of glycosidically substituted maltooligosaccharides, and their use as amylase substrates. Carbohydr Res 61:359–368CrossRefGoogle Scholar
  81. Wang F, Du G, Li Y, Chen J (2004) Optimization of cultivation conditions for the production of γ-cyclodextrin glucanotransferase by Bacillus macorous. Food Biotechnol 18:251–264CrossRefGoogle Scholar
  82. Wang F, Du G, Li Y, Chen J (2006) Regulation of CCR in the γ-CGTase production from Bacillus macorous by the specific cell growth rate control. Enzyme Microb Technol 39:1279–1285CrossRefGoogle Scholar
  83. Yagi Y, Sato M, Ishikura T (1986) Comparison of CGTase from Bacillus obensis, Bacillus macerans and Bacillus circulans and production of cyclodextrins using these CGTases. J Jpn Soc Starch Sci (in Japanese) 33:144–151CrossRefGoogle Scholar
  84. Yamamoto M, Tanaka Y, Horikoshi K (1972) Alkaline amylases of alkalophilic bacteria. Agric Biol Chem 36:1819–1823CrossRefGoogle Scholar
  85. Yang GW, Li J, Xie WM, Wang DM, Xie BT (2001) Studies on γ-CGTase from Bacillus sp.32-3-1. Ind Microbiol(in Chinese) 31:30–32Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Department of Research SupportJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations