Genomics and Evolution of Alkaliphilic Bacillus Species

  • Hideto Takami
Reference work entry

A great number of aerobic endospore-forming Gram-positive Bacillus species have been isolated on a number of occasions from a variety of terrestrial and deep-sea environments, including the Mariana Trench, which has a depth of 10,897 m (Takami et al. 1997). Some of these Bacullus species are known to have various capabilities for adapting to extreme environments. In fact, Bacillus-related species can grow in a wide range of environments – at pH 2–12, at temperatures between 5°C and 78°C, in salinity from 0% to 30% NaCl, and under pressures from 0.1 Mpa to at least 30 Mpa. We are now exploring how these adaptive capabilities, as reflected in their genomes, were acquired and what intrinsic genomic structures are present in Bacillus-related species that have allowed them to adapt to such a wide range of environments. To answer these questions, especially for adaptation mechanisms to alkaline environments, we initiated a genome sequencing project in early 1998 and determined the entire...


Insertion Sequence Orthologous Relationship Target Site Duplication Alkaliphilic Bacillus Polyglutamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abarca FM, Toro N (2000) Group II introns in the bacterial world. Mol Microbiol 38:917–926CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Aono R, Hashimoto M, Hayakawa A, Nakamura S, Horikoshi K (1992) A novel gene required for the alkaliphily of the facultative alkaliphilic Bacillus sp. strain C-125. Biosci Biotechnol Biochem 56:842–844CrossRefGoogle Scholar
  4. Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedGoogle Scholar
  5. Archer GL, Thanassi JA, Niemeyer DM, Pucci MJ (1996) Characterization of IS1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob Agents Chemother 40:924–929PubMedGoogle Scholar
  6. Bao Q, Tian Y, Li W et al (2002) A complete sequence of the Thermoanaerobacter tengcongensis genome. Genome Res 12:689–700PubMedCrossRefGoogle Scholar
  7. Beuzon CR, Casadesus J (1997) Conserved structure of IS200 elements in Salmonella. Nucleic Acids Res 25:1355–1361PubMedCrossRefGoogle Scholar
  8. Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H (2003a) Prophage genomics. Microbiol Mol Biol Rev 67:238–276PubMedCrossRefGoogle Scholar
  9. Canchaya C, Fournos G, Chibani-Chennoufi S, Dillmann ML, Brüssow H (2003b) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424PubMedCrossRefGoogle Scholar
  10. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93:14648–14653PubMedCrossRefGoogle Scholar
  11. Chahine M, Pilote S, Pouliot V, Takami H, Sato C (2004) Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J Membr Biol 201:9–24PubMedCrossRefGoogle Scholar
  12. Chen CM, Ye QZ, Wanner ZhuZ, BL WCT (1990) Molecular biology of carbon-phosphorus bond cleavage. J Biol Chem 265:4461–4471PubMedGoogle Scholar
  13. Dalrymple B, Caspers P, Arber W (1984) Nucleotide sequence of the prokaryotic mobile genetic element IS30. EMBO J 3:2145–2149PubMedGoogle Scholar
  14. Fleischmann RD, Adams MD, White O et al (1995) Whole genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  15. Germond JE, Lapierre L, Delley M, Mollet B (1995) A new mobile genetic element in Lactobacillus delbrueckii subsp. bulgaricus. Mol Gen Genet 248:407–416PubMedCrossRefGoogle Scholar
  16. Haldenwang WG (1995) The sigma factors in B. subtilis. Microbiol Rev 59:1–30PubMedGoogle Scholar
  17. Honda H, Kudo T, Ikura Y, Horikoshi K (1985) Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Can J Microbiol 31:538–542CrossRefGoogle Scholar
  18. Horikoshi K (1999a) Alkaliphiles. Haward Academic, AmsterdamGoogle Scholar
  19. Horikoshi K (1999b) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedGoogle Scholar
  20. Ikura Y, Horikoshi K (1978) Cell free protein synthesizing system of alkalophilic Bacillus No. A-59. Agric Biol Chem 42:753–756CrossRefGoogle Scholar
  21. Ikura Y, Horikoshi K (1979) Isolation and some properties of β-galactosidase producing bacteria. Agric Biol Chem 43:85–88CrossRefGoogle Scholar
  22. Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci USA 101:10566–10571PubMedCrossRefGoogle Scholar
  23. Ivanova N, Sorokin A, Anderson I et al (2003) Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423:87–91PubMedCrossRefGoogle Scholar
  24. Janausch I, Zientz GE, Tran Q, Kröger HA, Unden G (2002) C4-dicarbolylate carriers and sensors in bacteria. Biochim Biophys Acta 1553:39–56PubMedCrossRefGoogle Scholar
  25. Kagamiyama H, Hayashi H (2000) Branched-chain amino acid aminotransferase of E. coli. Methods Enzymol 324:103–113PubMedCrossRefGoogle Scholar
  26. Klaer R, Kuhn S, Tillmann E, Fritz HJ, Starlinger P (1981) The sequence of IS4. Mol Gen Genet 181:169–175PubMedCrossRefGoogle Scholar
  27. Kobayashi K, Ehrlich SD, Albertini A et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683PubMedCrossRefGoogle Scholar
  28. Kosono S, Morotomi S, Kitada M, Kudo T (1999) Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of alkaliphilic Bacillus sp. C-125. Biochim Biophys Acta 1409:171–175PubMedCrossRefGoogle Scholar
  29. Krämer R, Palmieri F (1992) Metabolite carriers in mitochondria. In: Ernster L (ed) New comprehensive biochemistry: molecular mechanisms in bioenergetics. Elsevier, Amsterdam, pp 359–384CrossRefGoogle Scholar
  30. Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505:156–168Google Scholar
  31. Kudo T, Hino M, Kitada M, Horikoshi K (1990) DNA sequences required for the alkalophily of Bacillus sp. strain C-125 are located close together on its chromosomal DNA. J Bacteriol 172:7282–7283PubMedGoogle Scholar
  32. Kunst F, Ogasawara N, Mozer I et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256PubMedCrossRefGoogle Scholar
  33. Kuroda M, Ohta T, Uchiyama I et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240PubMedCrossRefGoogle Scholar
  34. Lehman K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 38:249–303CrossRefGoogle Scholar
  35. Lonetto MA, Brown KL, Rudd KE, Buttner MJ (1994) Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci USA 91:7573–7577PubMedCrossRefGoogle Scholar
  36. Lu J, Nogi Y, Takami H (2001) Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 205:291–297PubMedCrossRefGoogle Scholar
  37. Mahillon J, Chandler M (1998) Insertion sequence. Microbiol Mol Biol Rev 62:725–774PubMedGoogle Scholar
  38. Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461PubMedCrossRefGoogle Scholar
  39. Moir A, Smith DA (1990) The genetics of bacterial spore germination. Annu Rev Microbiol 44:531–553PubMedCrossRefGoogle Scholar
  40. Mullant P, Pallen M, Wilkins M, Stephen JR, Tabaqchali S (1996) A group II intron in a conjugative transposon from the gram positive bacterium Clostridium difficile. Gene 174:145–150CrossRefGoogle Scholar
  41. Murata K, Higaki N, Kimura A (1988) Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes. Biochem Biophys Res Commun 157:190–195PubMedCrossRefGoogle Scholar
  42. Nagai T, Tran LSP, Inatsu Y, Itoh Y (2000) A new IS4 family insertion sequence, IS4Bsu1, responsible for genetic instability of poly-γ-glutamic acid production in Bacillus subtilis. J Bacteriol 182:2387–2392PubMedCrossRefGoogle Scholar
  43. Nazina TN, Tourova TP, Poltaraus AB et al (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrific. Int J Syst Evol Microbiol 51:433–446PubMedGoogle Scholar
  44. Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev 67:686–723PubMedCrossRefGoogle Scholar
  45. Niimura Y, Koh E, Yanagida F, Suzuki KI, Komagata K, Kozaki M (1990) Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40:297–301CrossRefGoogle Scholar
  46. Nölling J, Breton G, Omelchenko MV et al (2001) Complete sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838PubMedCrossRefGoogle Scholar
  47. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448PubMedCrossRefGoogle Scholar
  48. Plasterk RH (1993) Molecular mechanisms of transposition and its control. Cell 74:781–786PubMedCrossRefGoogle Scholar
  49. Read TD, Peterson SN, Tourasse N et al (2003) The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria. Nature 423:81–86PubMedCrossRefGoogle Scholar
  50. Reimmann C, Moore R, Little S, Savioz A, Willetts NS, Haas D (1989) Genetic structure, function and regulation of the transposable element IS21. Mol Gen Genet 215:416–424PubMedCrossRefGoogle Scholar
  51. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294:2372–2375PubMedCrossRefGoogle Scholar
  52. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrikson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602PubMedGoogle Scholar
  53. Sakiyama T, Takami H, Ogasawara N, Kuhara S, Kozuki T, Doga K, Ohyama A, Horikoshi K (2000) An automated system for genome analysis to support microbial whole-genome shotgun sequencing. Biosci Biotechnol Biochem 64:670–673PubMedCrossRefGoogle Scholar
  54. Schadewaldt P, Hummel W, Wendel U, Adelmeyer F (1995) Enzymatic method for determination of branched-chain amino acid aminotransferase activity. Anal Biochem 230:199–204PubMedCrossRefGoogle Scholar
  55. Schneuder E, Hunke S (1998) ATP-binding-cassete ABC transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 22:1–20CrossRefGoogle Scholar
  56. Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946PubMedCrossRefGoogle Scholar
  57. Shioi JI, Matsuura S, Imae Y (1980) Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol 144:891–897PubMedGoogle Scholar
  58. Sneath PHA, Mair NS, Sharp ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, vol 2. Wiliams and Wikins, BaltimoreGoogle Scholar
  59. Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov. and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496CrossRefGoogle Scholar
  60. Takaki Y, Matsuki A, Chee GJ, Takami H (2004) Identification and distribution of new insertion sequences in the genome of the extremely halotolerant and alkaliphilic Oceanobacillus iheyensis HTE831. DNA Res 11:233–245PubMedCrossRefGoogle Scholar
  61. Takami H (1999) Isolation and characterization of microorganisms from deep-sea Mud. In: Horikoshi K, Tsujii K (eds) Extremophiles in deep-sea environments. Springer, Tokyo, pp 3–26CrossRefGoogle Scholar
  62. Takami H, Horikoshi K (1999) Reidentification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans. Biosci Biotechnol Biochem 63:943–945CrossRefGoogle Scholar
  63. Takami H, Horikoshi K (2000) Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles 4:99–108PubMedCrossRefGoogle Scholar
  64. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial Flora in the deepest sea mud of Mariana Trench. FEMS Microbiol Lett 152:279–285PubMedCrossRefGoogle Scholar
  65. Takami H, Kobata K, Nagahama T, Kobayashi H, Inoue A, Horikoshi K (1999a) Biodiversity in the deep-sea sites located near the south part of Japan. Extremophiles 3:97–102PubMedCrossRefGoogle Scholar
  66. Takami H, Nakasone K, Hirama C, Takaki Y, Masui N, Fuji F, Nakamura Y, Inoue A (1999b) An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125. Extremophiles 3:21–28PubMedCrossRefGoogle Scholar
  67. Takami H, Nakasone K, Takaki Y et al (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331PubMedCrossRefGoogle Scholar
  68. Takami H, Han CG, Takaki Y, Ohtsubo E (2001) Identification and distribution of new insertion sequences in the genome of alkaliphilic Bacillus halodurans C-125. J Bacteriol 183:4345–4356PubMedCrossRefGoogle Scholar
  69. Takami H, Takaki Y, Uchiyama I (2002) Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extremely environments. Nucleic Acids Res 30:3927–3935PubMedCrossRefGoogle Scholar
  70. Takami H, Matsuki A, Takaki Y (2004a) Wide-range distribution of insertion sequences identified in B. halodurans among bacilli and a new transposon disseminated in alkaliphilic and thermophilic bacilli. DNA Res 11:153–162PubMedCrossRefGoogle Scholar
  71. Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I (2004b) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303PubMedCrossRefGoogle Scholar
  72. Tsujii K (2002) Donnan equilibria in microbial cell walls: a pH-homeostatic mechanism in alkaliphiles. Colloids Surf B Biopolymer 24:247–251CrossRefGoogle Scholar
  73. Uchiyama I (2003) MBGD: microbial genome database for comparative analysis. Nucleic Acids Res 31:58–62PubMedCrossRefGoogle Scholar
  74. Validation List (2002) Validation list no. 85: validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 52:685–690Google Scholar
  75. Ventosa A, Nieto J, Oren A (1998) A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544PubMedGoogle Scholar
  76. Wainø M, Tindall BJ, Schumann P, Ingvorsen K (1999) Gracilibacillus gen. nov., description of Gracilibacillus halotolerans gen. nov., sp. nov., transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831PubMedCrossRefGoogle Scholar
  77. Wisotzkey JD, Jurtshuk P, Fox GE Jr, Deinhard G, Poralla K (1992) Comparative sequences analyses on the 16S rRNA rDNA of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269PubMedCrossRefGoogle Scholar
  78. Yada T, Totoki Y, Takagi T, Nakai K (2001) A novel bacterial gene-finding system with top-class accuracy in locationg start codons. DNA Res 8:97–106PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  1. 1.Microbial Genome Research GroupInstitute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan

Personalised recommendations