Advertisement

Geruchs-orientierte Partnerwahl bei Vögeln und ihre Relevanz für die arterhaltende Vogelzucht

Living reference work entry
  • 18 Downloads

Zusammenfassung

Bei den artspezifisch sehr verschiedenen Fortpflanzungsstrategien von Wildvögeln galten Prachtgefieder, Balzverhalten, Gesang und ggf. Revierbesitz artgleicher Vogelmännchen bisher als die Hauptauswahlparameter der Vogelweibchen bei deren natürlicher Partnerfindung. Deshalb werden von Züchtern diesbezüglich dominante Männchen bei der Auswahl von Zuchtvögeln besonders bevorzugt. Neuere, wissenschaftliche Daten belegen jedoch, dass Wildvogelweibchen die männlichen Partner bevorzugen, deren individuelle MHC-Gene (Major Histocompatibility Complex) die eigenen MHC-Gene bei der Fortpflanzung optimal ergänzen. Das individuelle, männliche MHC-Profil erkennen die Weibchen am Geruch des männlichen MHC-Systems. Dadurch wird zufällige Inzucht innerhalb einer Wildvogelpopulation auf natürliche Weise verhindert und genetische Vielfalt innerhalb einer Population gesichert. Hohe Variabilität bei den MHC-Genen bestimmt die individuelle Kompetenz des Immunsystems eines Individuums. Ferner dient der individuelle MHC-Geruch zur sozialen Orientierung innerhalb einer artgleichen Vogelgruppe. Die Kenntnis dieser neuen, wissenschaftlich fundierten Daten kann deshalb bei der arterhaltenden Wildvogelzucht von großem Nutzen sein.

Schlüsselwörter

Wildvogelpopulation Fortpflanzungsstrategien Balzverhalten MHC MHC-Genpolymorphismus MHC-Geruch und Immunsystem Geruchs-dominierte Partnerwahl Reproduktionserfolg Freie Partnerwahl Zwangsverpaarung 

Literatur

  1. Andreou, D., et al. (2017). Mate choice in sticklebacks reveals that immunogens can drive ecological speciation. Behavioral Ecology, 28(4), 953–961.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arct, A., et al. (2010). Kin recognition and adjustment of reproductive effort in zebra finches. Biology Letters, 6(6), 762–764.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bergmann, H.-H., & Helb, H.-W. (2008). Die Stimmen der Vögel Europas. Wiebelsheim: Aula-Verlag.Google Scholar
  4. Booksmythe, I., et al. (2017). Facultative adjustment of the offsprings sex ratio and male attractiveness: A systemic review and meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 92(1), 108–134.PubMedCrossRefGoogle Scholar
  5. Brennan, P. A. (2004). The nose knows who’s who: Chemosensory individuality and mate recognition in mice. Hormones and Behavior, 46(3), 231–240.PubMedCrossRefGoogle Scholar
  6. Brennan, P. A., & Zufall, F. (2006). Pheromonal communication in vertebrates. Nature, 444, 308–315.PubMedCrossRefGoogle Scholar
  7. Caro, S. P., & Balthazart, J. (2010). Pheromones in birds: Myth or reality? Journal of Comparative Physiology A, 196(10), 751–766.CrossRefGoogle Scholar
  8. Caro, S. P., et al. (2015). The perfume of reproduction in birds: Chemosignalling in avian social life. Hormones and Behavior, 68, 25–42.PubMedCrossRefGoogle Scholar
  9. Caspers, B. A., et al. (2015). Impact of kin odour on reproduction in zebra finches. Behavioral Ecology and Sociobiology, 69(11), 1827–1833.CrossRefGoogle Scholar
  10. Caspers, B. A., et al. (2017). Zebra Finch chicks recognize parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Scientific Reports-Nature, 7, 12859–12871.CrossRefGoogle Scholar
  11. Charge, R., et al. (2014). Can sexual selection theory inform genetic management of captive populations? A review. Evolutionary Application, 7(9), 1120–1133.CrossRefGoogle Scholar
  12. Corfield, J. R., et al. (2015). Diversity in olfactory bulb size in birds reflects allometry, ecology and phylogeny. Fontiers in Neuroanatomy, 9(102), 1–21.  https://doi.org/10.3389/fnana.2015.00102.CrossRefGoogle Scholar
  13. Downing, P. A., et al. (2017). How to make a sterile helper. BioEssays, 39(1), 1–9.  https://doi.org/10.1002/bies.201600136.CrossRefGoogle Scholar
  14. Eizaguirre, C., et al. (2012). Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate population. Nature Communications, 3(621), 1–6.  https://doi.org/10.1038/ncomms16322.CrossRefGoogle Scholar
  15. Fox, R. J., et al. (2019). Sexual selection, phenotypic plasticity and female reproductive output. Philosophical Transactions of the Royal Society London B: Biological Sciences, 374(1768), 1–7.  https://doi.org/10.1098/rstb.2018.0184.CrossRefGoogle Scholar
  16. Gahr, C. L., et al. (2018). Female assortative mate choice functionally validates synthesized male odours of evolving sticklebacks river-lake ecotypes. Biology Letters, 14(12), 1–7.  https://doi.org/10.1098/rstb.2018.0730.CrossRefGoogle Scholar
  17. Golüke, S., et al. (2016). Femal zebra finches smell their eggs. PLoS One, 11(5), 1–8.  https://doi.org/10.1371/journal.pone.0155513.CrossRefGoogle Scholar
  18. Golüke, S., et al. (2019). Social odour activates the hippocampal formation in zebra finches (Taeniopygia guttata). Behavioural Brain Research, 364, 41–49.PubMedCrossRefGoogle Scholar
  19. Hoppe, D. (2018). Die Sinne der Papageien. Gefiederte Welt, 142(11), 20–25.Google Scholar
  20. Jennions, M. D., & Petrie, M. (2000). Why do female mate multiply? A review of the genetic benefits. Biological Reviews of the Cambridge Philosophical Society, 75(1), 21–64.PubMedCrossRefGoogle Scholar
  21. Kamath, P. L., et al. (2014). Parasite-mediated selection drives immunogenetic trade-off in plains zebras (Equus quagga). Proceedings of the Royal Society B: Biological Sciences, 281(1783), 1–15.  https://doi.org/10.1098/rspb.2014.0077.CrossRefGoogle Scholar
  22. Kamiya, T., et al. (2014). A quantitative review of MHC- based mating preference: The role of diversity and dissimilarity. Molecular Ecology, 23(21), 5151–5163.PubMedCrossRefGoogle Scholar
  23. Kappler, P. K. (2012a). Intersexuelle Selektion: was Weibchen wollen, Kapitel 9–10. In Verhaltensbiologie. Berlin/Heidelberg: Springer VS.CrossRefGoogle Scholar
  24. Kappler, P. K. (2012b). Intrasexuelle Selektion: wie Männchen konkurrieren, Kapitel 8. In Verhaltensbiologie. Berlin/Heidelberg: Springer VS.CrossRefGoogle Scholar
  25. Leclaire, S., et al. (2017a). Odour-based discrimination of similarity at the MHC in birds. Proceedings of the Royal Society B: Biological Sciences, 284, 1846–1854.Google Scholar
  26. Leclaire, S., et al. (2017b). Blue petrels recognize the odor of their egg. Journal of Experimental Biology, 220, 3022–3025.CrossRefGoogle Scholar
  27. Leditzky, W., & Pass, G. (2011). Die Bedeutung der Sexualität für Evolutionsprozesse. In M. S. Johannsen & D. Krüger (Hrsg.), Evolutionsbiologie (S. 65–91). Heidelberg: Spektrum.CrossRefGoogle Scholar
  28. Leinders-Zufall, T., et al. (2004). MHC Class I peptides as chemosensory signals in the vomeronasal organ. Science, 306(5698), 1033–1047.CrossRefGoogle Scholar
  29. Lenz, T. L., et al. (2009). RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus. BMC Evolutionary Biology, 9, 57, 1–32.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lenz, T. L., et al. (2018). Cryptic hapoltype-specific gamete selection yields offspring with optimal MHC immune genes. Evolution, 72(11), 2478–2490.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lichtenauer, W., et al. (2019). Indirect fitness benefits through extra-pair mating are large for an inbred minority, but cannot explain widespread infidelity among red-winged fairy-wens. Evolution, 73(3), 467–480.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Lifjeld, J. T., et al. (2019). Evolution of female promiscuity in Passerides songbirds. BMC Evolutionary Biology, 19, 169, 1–37.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Loiseau, C., et al. (2011). Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus). Proceedings of the Royal Society B: Biological Sciences, 278(1709), 1264–1272.PubMedCrossRefGoogle Scholar
  34. Maraci, Ö., et al. (2018). Olfactory communication via microbiota: What is known in birds? Genes (Basel), 9(8), 387–404.CrossRefGoogle Scholar
  35. Martin-Wintle, M. S., et al. (2018). Improving the sustainability of ex situ populations with mate choice. Zoo Biology, 26, 119–133.Google Scholar
  36. McDonalds, G. C., et al. (2017). Pre- and postcopulatory sexual selection favor aggressive, young males in polyandrous groups of red junglefowls. Evolution, 71(6), 1653–1669.CrossRefGoogle Scholar
  37. Milinski, M., et al. (2013). Major histocompatibility complex peptide ligands as olfactory cues in human body oudor assessment. Proceedings of the Royal Society B: Biological Sciences, 280, 1755–1763.Google Scholar
  38. Moehring, A. J., & Boughman, J. W. (2019). Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biology Letters, 15(2), 1–6.  https://doi.org/10.1098/rsbl.2018.0878.CrossRefGoogle Scholar
  39. O’Connor, E. A., et al. (2019). Avian MHC evolution in the era of genomics: Phase 1.0. Cells, 8, 1152–1157.PubMedCentralCrossRefGoogle Scholar
  40. Overath, P., & Natsch, A. (2018). Gibt es einen „Duft der Gene“? Biologie in unserer Zeit, 48(1), 27–35.CrossRefGoogle Scholar
  41. Sardell, R. J., & DuVal, E. V. (2013). Differential allocation in a lekking bird: Females lay larger eggs and are more likely to have male chicks when they mate with less related males. Proceedings of the Royal Society B: Biological Sciences, 281, 1774–1784.Google Scholar
  42. Slade, J. W. G., et al. (2017). Birdsong signals individual diversity at the major histocompatibility complex. Biology Letters, 13(11), 1–6.  https://doi.org/10.1098/rsbl.2017.0430.CrossRefGoogle Scholar
  43. Slatyer, R. A., et al. (2012). Estimating genetic benefits of polyandry from experimental studies: A meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 87(1), 1–33.PubMedCrossRefGoogle Scholar
  44. Sorci, G. (2013). Immunity, resistance and tolerance in bird-parasite interactions. Parasite Immunology, 35(11), 350–361.PubMedGoogle Scholar
  45. Stäb, F. (2019). Der Geruchssinn der Vögel – ein Schlüsselfaktor auch bei der Partnerwahl? Gefiederte Welt, 143(8), 18–22.Google Scholar
  46. Stymacks, A. (2018). Spektakuläre Balzrituale. https://www.nationalgeographic.de/tiere. Zugegriffen am 26.12.2019.
  47. Tschirren, B., et al. (2012). When mothers make sons sexy: Maternal effects contribute to the increased sexual attractiveness of extra-pair offspring. Proceedings of the Biological Society of Washington, 279(1731), 1233–1240.Google Scholar
  48. Wei Tan, C. K., et al. (2017). The contrasting role of male relatedness in different mechanisms of sexual selection in red junglefowls. Evolution, 71(2), 403–420.CrossRefGoogle Scholar
  49. Ziegler, A. (2003). Moleküle des MHC und olfaktorische Rezeptoren: Mögliche Bedeutung im Rahmen der Reproduktion. Journal für Fertilität und Reproduktion, 13(4), 14–18. Ausgabe für Österreich.Google Scholar
  50. Zinkant, K. (2018). Tierärzte gegen Gentests für Hunde. https://www.sueddeutsche.de/wissen. Zugegriffen am 26.12.2019.

Authors and Affiliations

  1. 1.EchemDeutschland

Personalised recommendations