Skip to main content

Nanocrystalline Silicon-Based Multilayers and Solar Cells

  • Reference work entry
  • First Online:
Book cover Handbook of Photovoltaic Silicon
  • 1323 Accesses

Abstract

Nanocrsytalline Silicon (nc-Si) is a promising material to develop the next generation of solar cells since it can efficiently absorb the incident solar light in a wide spectral range via the size modulation. The idea of all Si-based tandem type solar cells containing the sub-cells with various bandgaps motivates the extensive studies on the synthesis, physical properties, as well as the device applications of nc-Si material. Currently, the fabrication of size-controllable nc-Si is one of the challenging issues and the utilization of nc-Si in actual photovoltaic device is still at the stage of exploration. In this chapter, we describe the preparation of size-controllable nc-Si dots in multilayer by using thermally annealing or laser crystallization technique to crystallize amorphous Si/SiO2 or amorphous Si/SiC stacked structures. It is shown that the dot size can be well confined with the initial amorphous Si layer thickness and the size-dependent properties are observed. The chapter focuses on the utilization of prepared nc-Si-based multilayers in prototype hetero-junction solar cells. The photovoltaic properties with different dot size, surrounding insulator materials, as well as the novel grade-sized structures are present. Furthermore, the efforts to improve the device performance by combining light trapping structures with nc-Si-based multilayers are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Y.Q. Cao, P. Lu, X.W. Zhang, Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers. Nanoscale Res. Lett. 9, 634 (2014)

    Article  CAS  Google Scholar 

  • Y.Q. Cao, J. Xu, Z.Y. Ge, Enhanced broadband spectral response and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers. J. Mater. Chem. C 3, 12061 (2015)

    Article  CAS  Google Scholar 

  • Y.Q. Cao, Z.Y. Ge, X.F. Jiang, Light harvesting and enhanced performance of Si quantum dot/Si nanowire heterojunction solar cells. Part. Part. Syst. Charact. 33, 38 (2016)

    Article  CAS  Google Scholar 

  • G.R. Chang, F. Ma, D.Y. Ma, Growth and characterization of ceria thin films and Ce-doped γ-Al2O3 nanowires using sol-gel techniques. Nanotechnology 21, 465606 (2010)

    Article  CAS  Google Scholar 

  • K.J. Chen, X.F. Huang, J. Xu, Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum - well structures. Appl. Phys. Lett. 61, 2069 (1992)

    Article  CAS  Google Scholar 

  • G.R. Chen, J. Xu, W. Xu, Dynamical process of KrF pulsed excimer laser crystallization of ultrathin amorphous silicon films to form Si nano-dots. J. Appl. Phys. 111, 094320 (2012)

    Article  CAS  Google Scholar 

  • Q.J. Cheng, E. Tam, S.Y. Xu, Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Nanoscale 2, 594 (2010)

    Article  CAS  Google Scholar 

  • E.C. Cho, S. Park, X.J. Hao, Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19, 245201 (2008)

    Article  CAS  Google Scholar 

  • G. Conibeer, M. Green, R. Corkish, Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511, 654 (2006)

    Article  CAS  Google Scholar 

  • M. Hirasawa, T. Orii, T. Seto, Size-dependent crystallization of Si nanoparticles. Appl. Phys. Lett. 88, 093119 (2006)

    Article  CAS  Google Scholar 

  • L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249 (2007)

    Article  CAS  Google Scholar 

  • C.W. Jiang, M.A. Green, Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006)

    Article  CAS  Google Scholar 

  • H. Jin, G.L. Liu, Fabrication and optical characterization of light trapping silicon nanopore and nanoscrew devices. Nanotechnology 23, 125202 (2012)

    Article  CAS  Google Scholar 

  • Y. Kanemitsu, N. Shimizu, T. Komoda, Photoluminescent spectrum and dynamics of Si+-ion-implanted and thermally annealed SiO2 glasses. Phys. Rev. B 54, 14329 (1996)

    Article  Google Scholar 

  • T.W. Kim, C.H. Cho, B.H. Kim, Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 88, 123102 (2006)

    Article  CAS  Google Scholar 

  • Y. Kurokawa, S. Miyajima, A. Yamada, Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn. J. Appl. Phys. 45, L1064 (2006)

    Article  CAS  Google Scholar 

  • Y. Kurokawa, S. Tomita, S. Miyajima, Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Jpn. J. Appl. Phys. 46, L833 (2007)

    Article  CAS  Google Scholar 

  • Y. Kurokawa, S. Yamada, S. Miyajima, Effects of oxygen addition on electrical properties of silicon quantum dots/amorphous silicon carbide superlattice. Curr. Appl. Phys. 10, S435 (2010)

    Article  Google Scholar 

  • L.X. Li, J. Heitmann, M. Schmidt, Si rings, Si clusters, and Si nanocrystals-different states of ultrathin SiOx layers. Appl. Phys. Lett. 81, 4248 (2002)

    Article  CAS  Google Scholar 

  • H.F. Li, R. Jia, C. Chen, Influence of nanowires length on performance of crystalline silicon solar cell. Appl. Phys. Lett. 98, 151116 (2011)

    Article  CAS  Google Scholar 

  • S.X. Li, Y.J. Rui, Y.Q. Cao, Annealing effect on optical and electronic properties of silicon rich amorphous silicon-carbide films. Front. Optoelectron. 5(1), 107 (2012)

    Article  Google Scholar 

  • P. Löper, D. Stüwe, M. Künle, A Membrane Device for Substrate - Free Photovoltaic Characterization of Quantum Dot Based p -i - n Solar Cells. Adv. Mater. 24, 3124 (2012)

    Article  CAS  Google Scholar 

  • P. Löper, M. Canino, D. Qazzazie, Silicon nanocrystals embedded in silicon carbide: investigation of charge carrier transport and recombination. Appl. Phys. Lett. 102, 033507 (2013)

    Article  CAS  Google Scholar 

  • P. Lu, J. Xu, Y.Q. Cao, Preparation of nano-patterned Si structures for hetero-junction solar cells. Appl. Surf. Sci. 334, 123 (2015)

    Article  CAS  Google Scholar 

  • A. Martínez, S. Hernández, P. Pellegrino, Comparative study of the nonlinear optical properties of Si nanocrystals fabricated by e - beam evaporation, PECVD or LPCVD. Phys. Status Solidi C 8, 969 (2011)

    Article  CAS  Google Scholar 

  • F. Meillaud, A. Shah, C. Droz, Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 90, 2952 (2006)

    Article  CAS  Google Scholar 

  • S. Miyazaki, K. Makihara, M. Ikeda, Control of electronic charged states of Si-based quantum dots for floating gate application. Thin Solid Films 517, 41 (2008)

    Article  CAS  Google Scholar 

  • Y.H. Pai, G.R. Lin, Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane. Opt. Express 19, 896 (2011)

    Article  CAS  Google Scholar 

  • N.M. Park, C.J. Choi, T.Y. Seong, Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys. Rev. Lett. 86, 1355 (2001)

    Article  CAS  Google Scholar 

  • S. Park, E.C. Cho, D.Y. Song, n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol. Energy Mater. Sol. Cells 93, 684 (2009)

    Article  CAS  Google Scholar 

  • L. Pavesi, L. Dal Negro, C. Mazzoleni, Optical gain in silicon nanocrystals. Nature 408, 440 (2000)

    Article  CAS  Google Scholar 

  • I. Perez-Wurfl, L. Ma, D. Lin, Silicon nanocrystals in an oxide matrix for thin film solar cells with 492 mV open circuit voltage. Sol. Energy Mater. Sol. Cells 100, 65 (2012)

    Article  CAS  Google Scholar 

  • G.G. Qin, S.Y. Ma, Z.C. Ma, Electroluminescence from amorphous SiSiO2 superlattices. Solid State Commun. 106, 329 (1998)

    Article  CAS  Google Scholar 

  • Y.J. Rui, S.X. Li, J. Xu, Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J. Appl. Phys. 110, 064322 (2011)

    Article  CAS  Google Scholar 

  • W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p - n Junction Solar Cells. J. Appl. Phys. 32, 510 (1961)

    Article  CAS  Google Scholar 

  • H.J. Syu, S.C. Shiu, C.F. Lin, Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%. Sol. Energy Mater. Sol. Cells 98, 267 (2012)

    Article  CAS  Google Scholar 

  • J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  • H.P. Wang, T.Y. Lin, C.W. Hsu, Realizing High-Efficiency Omnidirectional n-Type Si Solar Cells via the Hierarchical Architecture Concept with Radial Junctions. ACS Nano 7, 9325 (2013)

    Article  CAS  Google Scholar 

  • J. Xu, X. Li, Z. Cen, Formation of a dense nanocrystalline Si array on an insulating layer by laser irradiation of ultrathin amorphous Si films. Scr. Mater. 53, 811 (2005)

    Article  CAS  Google Scholar 

  • J. Xu, S.H. Sun, Y.Q. Cao, Light Trapping and Down - Shifting Effect of Periodically Nanopatterned Si - Quantum - Dot - Based Structures for Enhanced Photovoltaic Properties. Part. Part. Syst. Charact. 31, 459 (2014)

    Article  CAS  Google Scholar 

  • S. Yamada, Y. Kurokawa, S. Miyajima, High open-circuit voltage oxygen-containing silicon quantum dots superlattice solar cells. Proceedings 35th IEEE Photovoltaic Specialists Conference, (2010), 000766

    Google Scholar 

  • S. Yamada, Y. Kurokawa, S. Miyajima, Improvement of electrical properties of silicon quantum dot superlattice solar cells with diffusion barrier layers. Jpn. J. Appl. Phys. 52, 04CR02 (2013)

    Article  CAS  Google Scholar 

  • L.W. Yu, S. Misra, J.Z. Wang, Understanding light harvesting in radial junction amorphous silicon thin film solar cells. Sci. Rep. 4, 4357 (2014)

    Article  CAS  Google Scholar 

  • M. Zacharias, J. Blasing, P. Veit, Thermal crystallization of amorphous Si/SiO2 superlattices. Appl. Phys. Lett. 74, 2614 (1999)

    Article  CAS  Google Scholar 

  • M. Zacharias, J. Heitmann, R. Scholz, Size-controlled highly luminescent silicon nanocrystals: A Si/SiO2 superlattice approach. Appl. Phys. Lett. 80, 661 (2002)

    Article  CAS  Google Scholar 

  • P. Zhang, X.W. Zhang, J. Xu, Tunable nonlinear optical properties in nanocrystalline Si/SiO2 multilayers under femtosecond excitation. Nanoscale Res. Lett. 9, 28 (2014a)

    Article  CAS  Google Scholar 

  • P. Zhang, X.W. Zhang, P. Lu, Interface state-related linear and nonlinear optical properties of nanocrystalline Si/SiO2 multilayers. Appl. Surf. Sci. 292, 262 (2014b)

    Article  CAS  Google Scholar 

  • J. Zhu, C.M. Hsu, Z. Yu, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Cao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cao, Y., Xu, J. (2019). Nanocrystalline Silicon-Based Multilayers and Solar Cells. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_30

Download citation

Publish with us

Policies and ethics