Skip to main content

Defects in Crystalline Silicon: Dislocations

  • Reference work entry
  • First Online:

Abstract

Current understanding of various properties of dislocations in Si is given comprehensively for photovoltaic applications. Dislocations cause spatial variations in the electrical and optical properties of semiconductor materials and also the degradation of various kinds of semiconductor devices. Thus, establishing knowledge on mechanical properties of dislocations and also interactions between dislocations and impurities is important from both the fundamental and practical viewpoints for development of semiconductor technology. Indeed, the knowledge is widely applied as the basis for dislocation-free crystal growth and device fabrication process in Si.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • H. Alexander, Dislocations in covalent crystals, in Dislocations in Solids, ed. by F. R. N. Nabarro, vol. 7, (Elsevier, Amsterdam, 1986), pp. 113–234

    Google Scholar 

  • H. Alexander, P. Haasen, Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27–158 (1968)

    Article  CAS  Google Scholar 

  • H. Alexander, C. Kisielowski-Kemmerich, E.R. Weber, Investigations of well defined dislocations in silicon. Physica 116B, 583–593 (1983)

    Google Scholar 

  • J. Bennetto, R.W. Nunes, D. Vanderbilt, Period-doubled structure for the 90° partial dislocation in silicon. Phys. Rev. Lett. 79, 245–248 (1997)

    Article  CAS  Google Scholar 

  • I.E. Bondarenko, H. Blumtritt, J. Heydenreich, V.V. Kazmiruk, E.B. Yakimov, Recombination properties of dislocation slip planes. Phys. Status Solidi A 95, 173–177 (1986)

    Article  CAS  Google Scholar 

  • M. Brede, The brittle-to-ductile transition in silicon. Acta Metall. Mater. 41, 211–228 (1993)

    Article  CAS  Google Scholar 

  • V.V. Bulatov, J.F. Justo, W. Cai, S. Yip, A.S. Argon, T. Lenosky, M. de Koning, T. Diaz de la Rubia, Parameter-free modelling of dislocation motion: the case of silicon. Philos. Mag. A 81, 1257–1281 (2001)

    Article  CAS  Google Scholar 

  • W. Cai, V.V. Bulatov, J.F. Justo, A.S. Argon, S. Yip, Intrinsic mobility of a dissociated dislocation in silicon. Phys. Rev. Lett. 84, 3346–3349 (2000)

    Article  CAS  Google Scholar 

  • J. Castaing, P. Veyssière, L.P. Kubin, J. Rabier, The plastic deformation of silicon between 300°C and 600°C. Philos. Mag. A 44, 1407–1413 (1981)

    Article  CAS  Google Scholar 

  • A. Castaldini, D. Cavalcoli, A. Cavallini, S. Pizzini, Experimental evidence of dislocation related shallow states in p-type Si. Phys. Rev. Lett. 95, 076401 (2005)

    Google Scholar 

  • I. Chasiotis, S.W. Cho, K. Jonnalagadda, Fracture toughness and subcritical crack growth in polycrystalline silicon. Trans. ASME 73, 714–722 (2006)

    Article  CAS  Google Scholar 

  • M. Chen, L. Pethö, A. Sologubenko, J. Michler, R. Spolenak, J. Wheeler, Study of mechanical strain induced defects in lithographic silicon at low temperatures via in situ microcompression. in Abstracts of the 19th international conference on Extended Defects in Semiconductors, ed. by P. Komninou (Thessaloniki), 24–29 June 2018 (2018)

    Google Scholar 

  • J. Cochard, I. Yonenaga, M. M’Hamdi, Z.L. Zhang, A novel constitutive model for semiconductors: The case of silicon. J. Mech. Phys. Solids 61, 2402–2032 (2013)

    Article  Google Scholar 

  • C. Donolato, Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor. J. Appl. Phys. 84, 2656–2664 (1998)

    Article  CAS  Google Scholar 

  • N.A. Drozdov, A.A. Patrin, V.D. Tkachev, Recombination radiation on dislocations in silicon. Sov. Phys. JETP Lett. 23, 597–599 (1976)

    Google Scholar 

  • M.S. Duesbery, B. Joós, Dislocation motion in silicon: The shuffle-glide controversy. Philos. Mag. Lett. 74, 253–258 (1996)

    Article  CAS  Google Scholar 

  • V.G. Eremenko, V.I. Nikitenko, E.B. Yakimov, The dependence of the electrical properties of silicon on the plastic deformation and annealing temperatures. Sov. Phys. JEPT 46, 598–603 (1977)

    Google Scholar 

  • V.N. Erofeev, V.I. Nikitenko, Comparison of theory of dislocation mobility with experimental data for silicon. Sov. Phys. JETP 33, 963–966 (1971)

    Google Scholar 

  • B.Ya. Farber, V.I. Nikitenko, Change of dislocation mobility characteristics in silicon single crystals at elevated temperatures. Phys. Status Solidi A 73, K141–K144 (1982)

    Article  CAS  Google Scholar 

  • W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Östlund, D.D. Stauffer, R. Ballarini, Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 898–906 (2009)

    Article  CAS  Google Scholar 

  • J. Godet, P. Hirel, S. Brochard, L. Pizzagalli, Evidence of two plastic regimes controlled by dislocation nucleation in silicon nanostructures. J. Appl. Phys. 105, 026104 (2009)

    Article  CAS  Google Scholar 

  • V.A. Grazhulis, V.V. Kveder, V.Yu. Mukhina, Investigation of the energy spectrum and kinetic phenomena in dislocated Si crystals (I). Phys. Status Solidi A 43, 407–415 (1977)

    Article  CAS  Google Scholar 

  • V.A. Grazhulis, V.V. Kveder, Yu.A. Ossipyan, Investigation of the dislocation spin system in silicon as model of one-dimensional spin chains. Phys. Status Solidi B 103, 519–528 (1981)

    Article  CAS  Google Scholar 

  • K. Hayashi, S. Tsujimoto, Y. Okamoto, T. Nishikawa, Fracture toughness of single crystal silicon at high temperatures. J. Soc. Mater. Sci. Jpn. 41, 488–494 (1992) (in Japanese)

    Article  CAS  Google Scholar 

  • M.I. Heggie, R. Jones, Solitons and the electrical and mobility properties of dislocations in silicon. Philos. Mag. B 48, 365–377 (1983)

    Article  CAS  Google Scholar 

  • M.I. Heggie, R. Jones, A. Umerski, Ab initio total energy calculations of impurity pinning in silicon. Phys. Status Solidi A 138, 383–387 (1993)

    Article  CAS  Google Scholar 

  • V. Higgs, E.C. Lightowlers, E.A. Fitzgerald, Y.H. Xie, P.J. Silverman, Characterization of compositionally graded Si1-x Gex alloy layers by photoluminescence spectroscopy and by cathodoluminescence spectroscopy and imaging. J. Appl. Phys. 73, 1952–1956 (1993)

    Google Scholar 

  • P.B. Hirsch, A mechanism for the effect of doping on dislocation mobility. J. Phys. Colloq. (Paris) 40, C6-117–C6-121 (1979)

    Google Scholar 

  • P.B. Hirsch, S.G. Roberts, The brittle-ductile transition in silicon. Philos. Mag. A 64, 55–80 (1991)

    Article  CAS  Google Scholar 

  • J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)

    Google Scholar 

  • J. Hornstra, Dislocations in the diamond lattice. J. Phys. Chem. Solids 5, 129–141 (1958)

    Article  CAS  Google Scholar 

  • S.M. Hu, Critical stress in silicon brittle fracture, and effect of ion implantation and other surface treatments. J. Appl. Phys. 53, 3576–3580 (1982)

    Article  CAS  Google Scholar 

  • S. Huang, S. Zhang, T. Belytschko, S.S. Terdalkar, T. Zhu, Mechanics of nanocrack: Fracture, dislocation emission, and amorphization. J. Mech. Phys. Solids 57, 840–850 (2009)

    Article  CAS  Google Scholar 

  • M. Imai, K. Sumino, In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals. Philos. Mag. A 47, 599–621 (1983)

    Article  CAS  Google Scholar 

  • S. Izumi, H. Ohta, C. Takahashi, T. Suzuki, H. Saka, Shuffle-set dislocation nucleation in semiconductor silicon device. Philos. Mag. Lett. 90, 707–714 (2010)

    Article  CAS  Google Scholar 

  • S. Johansson, J.-Å. Schweitz, L. Tenerz, J. Tirén, Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63, 4799–4803 (1988)

    Article  CAS  Google Scholar 

  • S. Johansson, F. Ericson, J.-Å. Schweitz, Influence of surface coatings on elasticity, residual stresses, and fracture properties of silicon microelements. J. Appl. Phys. 65, 122–128 (1989)

    Article  CAS  Google Scholar 

  • R. Jones, The structure of kinks on the 90° partial in silicon and a ‘strained-bonded model’ for dislocation motion. Philos. Mag. B 42, 213–219 (1980)

    Article  CAS  Google Scholar 

  • R. Jones, B.J. Coomer, J.P. Goss, S. Öberg, P.R. Briddon, Intrinsic defects and the D1 to D4 optical bands detected in plastically deformed Si. Phys. Status Solidi B 222, 133–140 (2000)

    Article  CAS  Google Scholar 

  • K. Jurkschat, S. Senkader, P.R. Wilshaw, D. Gambaro, R.J. Falster, Onset of slip in silicon containing oxide precipitates. J. Appl. Phys. 90, 3219–3225 (2001)

    Article  CAS  Google Scholar 

  • J.F. Justo, V.V. Bulatov, S. Yip, Dislocation core reconstruction and its effect on dislocation mobility in silicon. J. Appl. Phys. 86, 4249–4257 (1999a)

    Article  CAS  Google Scholar 

  • J.F. Justo, A. Antonelli, T.M. Schmidt, A. Fazzio, Effects of extended defects on the properties of intrinsic and extrinsic point defects in silicon. Physica B 273–274, 473–475 (1999b)

    Article  Google Scholar 

  • A. Kailer, Y.G. Gogotsi, K.G. Nickel, Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057–3063 (1997)

    Article  CAS  Google Scholar 

  • M.A. Khorosheva, V.V. Kveder, M. Seibt, On the nature of defects produced by motion of dislocations in silicon. Phys. Status Solidi A 212, 1695–1703 (2015)

    Article  CAS  Google Scholar 

  • M. Kittler, M. Reiche, Dislocations as active components in novel silicon devices. Adv. Eng. Mater. 11, 249–258 (2009)

    Article  CAS  Google Scholar 

  • T. Kizuka, Y. Takatani, K. Asaka, R. Yoshizaki, Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width. Phys. Rev. B 72, 035333 (2005)

    Article  CAS  Google Scholar 

  • H.R. Kolar, J.C.H. Spence, H. Alexander, Observation of moving dislocation kinks and unpinning. Phys. Rev. Lett. 77, 4031–4034 (1996)

    Article  CAS  Google Scholar 

  • S. Korte, J.S. Barnard, R.J. Stearn, W.J. Clegg, Deformation of silicon – Insights from microcompression testing at 25–500°C. Int. J. Plast. 27, 1853–1866 (2011)

    Article  CAS  Google Scholar 

  • S. Kusanagi, T. Sekiguchi, K. Sumino, Difference of the electrical properties of screw and 60° dislocations in silicon as detected with temperature-dependent electron beam induced current technique. Appl. Phys. Lett. 61, 792–794 (1992)

    Article  CAS  Google Scholar 

  • K.H. Küsters, H. Alexander, Photoplastic effect in silicon. Physica B 116, 594–599 (1983)

    Article  Google Scholar 

  • K. Kutsukake, T. Abe, N. Usami, K. Fujiwara, I. Yonenaga, K. Morishita, K. Nakajima, Generation mechanism of dislocations and their clusters in multicrystalline silicon during two-dimensional growth. J. Appl. Phys. 110, 083530 (2011)

    Article  CAS  Google Scholar 

  • K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga, Control of grain boundary propagation in mono-like Si: Utilization of functional grain boundaries. Appl. Phys. Express 6, 025505 (2013)

    Article  CAS  Google Scholar 

  • K. Kutsukake, M. Deura, Y. Ohno, I. Yonenaga, Characterization of silicon ingots: Mono-like versus high-performance multicrystalline. Jpn. J. Appl. Phys. 54, 08KD10 (2015)

    Article  CAS  Google Scholar 

  • V. Kveder, M. Kittler, Dislocations in silicon and D-band luminescence for infrared light emitters. Mater. Sci. Forum 590, 29–56 (2008)

    Article  CAS  Google Scholar 

  • V.V. Kveder, Yu.A. Osipyan, W. Schröter, G. Zoth, On the energy spectrum of dislocations in silicon. Phys. Status Solidi A 72, 701–713 (1982)

    Article  CAS  Google Scholar 

  • V. Kveder, M. Kittler, W. Schröter, Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior. Phys. Rev. B 63, 115208 (2001)

    Google Scholar 

  • B.R. Lawn, Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993)

    Book  Google Scholar 

  • N. Lehto, S. Öberg, Effects of dislocation interactions: Application to the period-doubled core of the 90° partial in silicon. Phys. Rev. Lett. 80, 5568–5571 (1998)

    Article  CAS  Google Scholar 

  • Z. Li, C. Picu, Shuffle-glide dislocation transformation in Si. J. Appl. Phys. 113, 083519 (2013)

    Article  CAS  Google Scholar 

  • F. Louchet, On the mobility of dislocations in silicon by in situ straining in a high-voltage electron microscope. Philos. Mag. A 43, 1289–1297 (1981)

    Article  CAS  Google Scholar 

  • F. Louchet, J. Pelissier, D. Caillard, J.P. Peyrade, C. Levade, G. Vanderschaeve, In situ TEM study of dislocation mobility in semiconducting materials. Microsc. Microanal. Microstruct. 4, 199–200 (1993)

    Article  CAS  Google Scholar 

  • K. Maeda, S. Takeuchi, Enhancement of dislocation mobility in semiconducting crystals by electronic excitation, in Dislocations in Solids, ed. by F. R. N. Nabarro, M. S. Duesbery, vol. 10, (Elsevier, Amsterdam, 1996), pp. 443–504

    Google Scholar 

  • K. Maeda, K. Kimura, S. Takeuchi, Effects of excitations on dislocation mobility in elemental semiconductors. Bull. Acad. Sci. USSR Phys. Ser. 51, 93–98 (1987)

    Google Scholar 

  • A. Masolin, P.-O. Bouchard, R. Martini, M. Bernacki, Thermo-mechanical and fracture properties in single-crystal silicon. J. Mater. Sci. 48, 979–988 (2013)

    Article  CAS  Google Scholar 

  • J.C. McLaughlin, A.F.W. Willoughby, Fracture of silicon wafers. J. Cryst. Growth 85, 83–90 (1987)

    Article  CAS  Google Scholar 

  • R. Meingast, H. Alexander, Dissociated dislocations in germanium. Phys. Status Solidi A 17, 229–236 (1973)

    Article  CAS  Google Scholar 

  • G. Michot, Fundamentals of silicon fracture. Cryst. Prop. Prep. 17&18, 55–98 (1988)

    Google Scholar 

  • G. Michot, M. Angela Loyola de Oliveira, A. George, Dislocation loops at crack tips: control and analysis of sources in silicon. Mater. Sci. Eng. A 176, 99–109 (1994)

    Article  CAS  Google Scholar 

  • A.M. Minor, E.T. Lilleodden, M. Jin, E.A. Stach, D.C. Chrzan, J.W. Morris Jr., Room temperature dislocation plasticity in silicon. Philos. Mag. 85, 323–330 (2005)

    Article  CAS  Google Scholar 

  • K. Minowa, I. Yonenaga, K. Sumino, Climb of dislocations induced by oxygen precipitation in silicon. Inst. Phys. Conf. Ser. 117, 217–220 (1991)

    CAS  Google Scholar 

  • H.J. Möller, C. Funke, M. Rinio, S. Scholz, Multicrystalline silicon for solar cells. Thin Solid Films 487, 179–187 (2005)

    Article  CAS  Google Scholar 

  • S. Nakao, T. Ando, M. Shikida, K. Sato, Effect of temperature on fracture toughness in a single-crystal-silicon film and transition in its fracture mode. J. Micromech. Microeng. 18, 015026 (2008)

    Article  CAS  Google Scholar 

  • W.L. Ng, M.A. Lourenço, R.M. Gwilliam, S. Ledain, G. Shao, K.P. Homewood, An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001)

    Article  CAS  Google Scholar 

  • Y. Ohno, T. Shirakawa, T. Taishi, I. Yonenaga, Interaction of phosphorus with dislocations in heavily phosphorus doped silicon. Appl. Phys. Lett. 95, 091915 (2009)

    Article  CAS  Google Scholar 

  • Y. Ohno, T. Taishi, Y. Tokumoto, I. Yonenaga, Interaction of dopant atoms with stacking faults in silicon crystals. J. Appl. Phys. 108, 073514 (2010)

    Article  CAS  Google Scholar 

  • Y. Ohno, Y. Tokumoto, H. Taneichi, I. Yonenaga, K. Togase, S.R. Nishitani, Interaction of dopant atoms with stacking faults in silicon. Physica B 407, 3006–3008 (2012)

    Article  CAS  Google Scholar 

  • T. Okuno, H. Saka, Electron microscopie study of dislocations introduced by deformation in a Si between 77 and 873 K. J. Mater. Sci. 48, 115–124 (2013)

    Article  CAS  Google Scholar 

  • P. Omling, E.R. Weber, L. Montelius, H. Alexander, J. Michel, Electrical properties of dislocations and point defects in plastically deformed silicon. Phys. Rev. B 32, 6571–6581 (1985)

    Article  CAS  Google Scholar 

  • M. Omri, J.P. Michel, C. Tete, A. George, Mechanical behavior of polycrystals and single crystals of silicon. in Proceedings of International Conference on Strength of Metals and Alloys (1985), pp. 75–80

    Google Scholar 

  • M. Omri, C. Tete, J.-P. Michel, A. George, On the yield point of floating-zone silicon single crystals I. Yield stresses and activation parameters. Philos. Mag. A 55, 601–616 (1987)

    Article  CAS  Google Scholar 

  • H. Ono, K. Sumino, Defect states in p-type silicon crystals induced by plastic deformation. J. Appl. Phys. 57, 287–292 (1985)

    Article  CAS  Google Scholar 

  • D. Oriwol, E.-R. Carl, A.N. Danilewsky, L. Sylla, W. Seifert, M. Kittler, H.S. Leipner, Small-angle subgrain boundaries emanating from dislocation pile-ups in multicrystalline silicon studied with synchrotron white-beam X-ray topography. Acta Mater. 61, 6903–6910 (2013)

    Article  CAS  Google Scholar 

  • J.R. Patel, L.C. Kimerling, Dislocation defect states in silicon. J. Phys. Colloq. (Paris) 40, C6-67–C6-70 (1979)

    Article  Google Scholar 

  • P. Pirouz, A.V. Samant, M.H. Hong, A. Moulin, L.P. Kubin, On temperature dependence of deformation mechanism and the brittle-ductile transition in semiconductors. J. Mater. Res. 14, 2783–2793 (1999)

    Article  CAS  Google Scholar 

  • L. Pizzagalli, Atomistic modeling of the dissociation of a screw dislocation in silicon. J. Mater. Sci. 51, 2869–2876 (2016)

    Article  CAS  Google Scholar 

  • L. Pizzagalli, P. Beauchamp, Dislocation motion in silicon: the shuffle-glide controversy revisited. Philos. Mag. Lett. 88, 421–427 (2008)

    Article  CAS  Google Scholar 

  • J. Rabier, On the core structure of dislocations and the mechanical properties of silicon. Philos. Mag. 93, 162–173 (2013)

    Article  CAS  Google Scholar 

  • J. Rabier, P. Veyssière, J.L. Demenet, Plastic deformation of silicon at low temperature and the influence of doping. J. Phys. Colloq. (Paris) 44, C4-243–C4-253 (1983)

    Article  Google Scholar 

  • J. Rabier, P. Cordier, J.L. Demenet, H. Garem, Plastic deformation of Si at low temperature under high confining pressure. Mater. Sci. Eng. A 309–310, 74–77 (2001)

    Article  Google Scholar 

  • J. Rabier, L. Pizzagalli, J.L. Demenet, Dislocations in silicon at high stress, in Dislocations in Solids, ed. by J. P. Hirth, L. Kubin, vol. 16, (Elsevier, Amsterdam, 2010), pp. 47–108

    Chapter  Google Scholar 

  • J. Rabier, A. Montagne, J.M. Wheeler, J.L. Demenet, J. Michler, R. Ghisleni, Silicon micropillars: High stress plasticity. Phys. Status Solidi C 10, 11–15 (2013)

    Article  CAS  Google Scholar 

  • I.L.F. Ray, D.J.H. Cockayne, The dissociation of dislocations in silicon. Proc. R. Soc. Lond. A 325, 543–554 (1971)

    Article  CAS  Google Scholar 

  • W.T. Read, Theory of dislocations in germanium. Philos. Mag. 45, 775–796 (1954)

    Article  CAS  Google Scholar 

  • M. Rinio, A. Yodyunyong, S. Keipert-Colberg, D. Borchert, A. Montesdeoca-Santana, Recombination in ingot cast silicon solar cells. Phys. Status Solidi A 208, 760–768 (2011)

    Article  CAS  Google Scholar 

  • D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Mater. 124, 633–659 (2017)

    Article  CAS  Google Scholar 

  • B. Ryningen, G. Stokkan, M. Kivambe, T. Ervik, O. Lohne, Growth of dislocation clusters during directional solidification of multicrystalline silicon ingots. Acta Mater. 59, 7703–7710 (2011)

    Article  CAS  Google Scholar 

  • H. Saka, K. Yamamoto, S. Arai, K. Kuroda, In-situ TEM observation of transformation of dislocations from shuffle to glide sets in Si under supersaturation of interstitials. Philos. Mag. 86, 4841–4850 (2006)

    Article  CAS  Google Scholar 

  • J. Samuels, S.G. Roberts, The brittle-ductile transition in silicon. I. Experiments. Proc. Roy. Soc. Lond. A 421, 1–23 (1989)

    Article  CAS  Google Scholar 

  • M. Sato, K. Sumino, Locking of dislocations by impurity oxygen in silicon crystals, in Proceedings of 9th Yamada Conference on Dislocations in Solids, ed. by H. Suzuki, T. Ninomiya, K. Sumino, S. Takeuchi, (University of Tokyo Press, Tokyo, 1985), pp. 391–394

    Google Scholar 

  • M. Sato, K. Hiraga, K. Sumino, HVEM structure images of extended 60°- and screw dislocations in silicon. Jpn. J. Appl. Phys. 19, L155–L158 (1980)

    Article  CAS  Google Scholar 

  • R. Sauer, Ch. Kisielowski-Kemmerich, H. Alexander, Dissociation-width-dependent radiative recombination of electrons and holes at widely split dislocations in silicon. Phys. Rev. Lett. 57, 1472–1475 (1986)

    Article  CAS  Google Scholar 

  • W. Schröter, R. Labusch, Electrical properties of dislocations in Ge and Si. Phys. Status Solidi 36, 539–550 (1969)

    Article  Google Scholar 

  • W. Schröter, H. Cerva, Interaction of point defects with dislocations in silicon and germanium: Electrical and optical effects. Solid State Phenom. 85–86, 67–143 (2002)

    Google Scholar 

  • W. Schröter, H.G. Brion, H. Siethoff, Yield point and dislocation mobility in silicon and germanium. J. Appl. Phys. 54, 1816–1820 (1983)

    Article  Google Scholar 

  • W. Schröter, V. Kveder, H. Hedemann, Electrical effects of point defect clouds at dislocations in silicon, studied by deep level transient spectroscopy. Solid State Phenom. 82–84, 213–218 (2002)

    Google Scholar 

  • M. Seibt, R. Khalil, V. Kveder, W. Schröter, Electronic states at dislocations and metal silicide precipitates in crystalline silicon and their role in solar cell material. Appl. Phys. A Mater. Sci. Process. 96, 235–253 (2009)

    Article  CAS  Google Scholar 

  • K. Shima, S. Izumi, S. Sakai, Reaction pathway analysis for dislocation nucleation from a sharp corner in silicon: Glide set versus shuffle set. J. Appl. Phys. 108, 063504 (2010)

    Article  CAS  Google Scholar 

  • W. Shockley, Dislocations and edge states in the diamond crystal structure. Phys. Rev. 91, 228 (1953)

    Article  CAS  Google Scholar 

  • H. Siethoff, Yield point and dislocation velocity of diamond and zincblende semiconductors in different temperature regimes. Philos. Mag. A 82, 1299–1316 (2002)

    CAS  Google Scholar 

  • H. Siethoff, H.G. Brion, W. Schröter, A regime of the yield point of silicon at high temperatures. Appl. Phys. Lett. 75, 1234–1236 (1999)

    Article  CAS  Google Scholar 

  • C. St. John, The brittle-to-ductile transition in pre-cleaved silicon single crystals. Philos. Mag. 32, 1193–1212 (1975)

    Article  CAS  Google Scholar 

  • W.A. Stepanov, V.V. Shpeizman, A kinetic treatment of the brittle fracture of materials. Mater. Sci. Eng. 49, 195–228 (1981)

    Article  CAS  Google Scholar 

  • M. Suezawa, K. Sumino, I. Yonenaga, Dislocation dynamics in the plastic deformation of silicon crystals II. Theoretical analysis of experimental results. Phys. Status Solidi A 51, 217–226 (1979)

    Article  CAS  Google Scholar 

  • M. Suezawa, K. Sumino, M. Iwaizumi, ESR in plastically deformed silicon crystals. Inst. Phys. Conf. Ser. 59, 407–412 (1981)

    CAS  Google Scholar 

  • K. Sumino, Mechanical behaviour of semiconductors, in Handbook on Semiconductor, ed. by S. Mahajan, vol. 3, (North-Holland, Amsterdam, 1994), pp. 73–181

    Google Scholar 

  • K. Sumino, H. Harada, In situ X-ray topographic studies of the generation and multiplication processes of dislocations in silicon crystals at elevated temperatures. Philos. Mag. A 44, 1319–1334 (1981)

    Article  CAS  Google Scholar 

  • K. Sumino, M. Imai, Interaction of dislocations with impurities in silicon crystals studied by in situ X-ray topography. Philos. Mag. A 47, 753–766 (1983)

    Article  CAS  Google Scholar 

  • K. Sumino, I. Yonenaga, Dislocation dynamics and mechanical behaviour of elemental and compound semiconductors. Phys. Status Solidi A 138, 573–581 (1993)

    Article  CAS  Google Scholar 

  • K. Sumino, I. Yonenaga, Oxygen effect on mechanical properties, in Semiconductors and Semimetals, ed. by F. Shimura, vol. 42, (Academic, San Diego, 1994), pp. 449–511

    Google Scholar 

  • K. Sumino, I. Yonenaga, Interactions of impurities with dislocations: Mechanical effects. Solid State Phenom. 85–86, 145–176 (2002)

    Google Scholar 

  • K. Sumino, I. Yonenaga, M. Imai, T. Abe, Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals. J. Appl. Phys. 54, 5016–5020 (1983)

    Article  CAS  Google Scholar 

  • H. Suzuki, Segregation of solute atoms to stacking faults. J. Phys. Soc. Jpn. 17, 322–325 (1962)

    Article  CAS  Google Scholar 

  • T. Suzuki, T. Yasutomi, T. Tokuoka, I. Yonenaga, Plasticity of III-V compounds at low temperatures. Phys. Status Solidi A 171, 47–52 (1999)

    Article  CAS  Google Scholar 

  • S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  • M. Tajima, Y. Iwata, F. Okayama, H. Toyota, H. Onodera, T. Sekiguchi, Deep-level photoluminescence due to dislocations and oxygen precipitates in multicrystalline Si. J. Appl. Phys. 111, 113523 (2012)

    Article  CAS  Google Scholar 

  • I. Takahashi, N. Usami, K. Kutsukake, G. Stokkan, K. Morishita, K. Nakajima, Generation mechanism of dislocations during directional solidification of multicrystalline silicon using artificially designed seed. J. Cryst. Growth 312, 897–901 (2010)

    Article  CAS  Google Scholar 

  • S. Takeuchi, Two-step temperature dependence of the yield stress in crystals. J. Alloys Compd. 378, 61–65 (2004)

    Article  CAS  Google Scholar 

  • M. Tanaka, K. Higashida, HVEM characterization of crack tip dislocations in silicon crystals. J. Electron Microscopy 53, 353–360 (2004)

    Article  CAS  Google Scholar 

  • K. Tanaka, M. Suezawa, I. Yonenaga, Photoluminescence spectra of deformed Si-Ge alloy. J. Appl. Phys. 80, 6991–6996 (1996)

    Article  CAS  Google Scholar 

  • M. Trushin, O. Vyvenko, V. Vdovin, M. Kittler, Giant Poole-Frenkel effect for the shallow dislocation-related hole traps in silicon. J. Phys. Conf. Ser. 281, 012009 (2011)

    Article  CAS  Google Scholar 

  • A. Valladares, J.A. White, A.P. Sutton, First principles simulations of the structure, formation, and migration energies of kinks on the 90° partial dislocation in silicon. Phys. Rev. Lett. 81, 4903–4906 (1998)

    Article  CAS  Google Scholar 

  • G. Vanderschaeve, D. Caillard, On the mobility of dislocations in semiconductor crystals. Mater. Sci. Eng. A 462, 418–421 (2007)

    Article  CAS  Google Scholar 

  • G. Vanderschaeve, C. Levade, D. Caillard, Transmission electron microscopy in situ investigation of dislocation mobility in semiconductors. J. Phys.: Condens. Matter 12, 10093–10103 (2000)

    CAS  Google Scholar 

  • G.P. Watson, J.L. Benton, Y.H. Xie, E.A. Fitzgerald, Influence of misfit dislocation interactions on photoluminescence spectra of SiGe on patterned Si. J. Appl. Phys. 83, 3773–3776 (1998)

    Article  CAS  Google Scholar 

  • E.R. Weber, H. Alexander, Deep level defects in plastically deformed silicon. J. Phys. Colloq. (Paris) 44, C4-319–C4-328 (1983)

    Google Scholar 

  • J. Weber, M.I. Alonso, Detection of dislocation-related photoluminescence bands in Si-Ge alloys grown by liquid phase epitaxy, in Defect Control in Semiconductors, ed. by K. Sumino, (North-Holland, Amsterdam, 1990), pp. 1453–1457

    Chapter  Google Scholar 

  • J.D. Weeks, J.C. Tully, L.C. Kimerling, Theory of recombination-enhanced defect reactions in semiconductors. Phys. Rev. B 12, 3286–3292 (1975)

    Article  CAS  Google Scholar 

  • M. Werner, M. Bartsch, U. Messerschmidt, D. Baither, TEM observations of dislocation motion in polycrystalline silicon during in situ straining in the high voltage electron microscope. Phys. Status Solidi A 146, 133–143 (1994)

    Article  CAS  Google Scholar 

  • M. Werner, E.R. Weber, M. Bartsch, U. Messerschmidt, Carrier injection enhanced dislocation glide in silicon. Phys. Status Solidi A 150, 337–341 (1995)

    Article  CAS  Google Scholar 

  • K. Wessel, H. Alexander, On the mobility of partial dislocations in silicon. Philos. Mag. 35, 1523–1536 (1977)

    Article  CAS  Google Scholar 

  • S.-B. Woo, M. Bertoni, K.-M. Choi, S.-J. Nam, S. Castellanos, D.M. Powell, T. Buonassisi, H.-J. Choi, An insight into dislocation density reduction in multicrystalline silicon. Sol. Energy Mater. Sol. Cells 155, 88–100 (2016)

    Article  CAS  Google Scholar 

  • Y. Yamamoto, K. Togase, Y. Ohno, I. Yonenaga, S.R. Nishitani, First principles calculations of solution energies of dopants around stacking faults in Si crystal. Jpn. J. Appl. Phys. 53, 061302 (2014)

    Article  CAS  Google Scholar 

  • Y. Yamashita, E. Jyobe, Y. Kamiura, K. Maeda, Hydrogen enhanced dislocation glides in silicon. Phys. Status Solidi A 171, 27–34 (1999)

    Article  CAS  Google Scholar 

  • K. Yasutake, S. Shimizu, M. Umeno, H. Kawabe, Velocity of twinning partial dislocations in silicon. J. Appl. Phys. 61, 940–946 (1987)

    Article  CAS  Google Scholar 

  • I. Yonenaga, Upper yield stress of Si crystals at high temperature. J. Electrochem. Soc. 143, 176–178 (1996)

    Article  CAS  Google Scholar 

  • I. Yonenaga, Strength of Si crystals. Recent Res. Dev. ElectroChem. 1, 161–176 (1998)

    CAS  Google Scholar 

  • I. Yonenaga, Growth and mechanical properties of GeSi bulk crystals. J. Mater. Sci.: Mater. Electron. 10, 329–333 (1999)

    CAS  Google Scholar 

  • I. Yonenaga, Dislocation-impurity interaction in silicon. Solid State Phenom. 95–96, 423–432 (2004)

    Google Scholar 

  • I. Yonenaga, Nitrogen effects on generation and velocity of dislocations in Czochralski-grown silicon. J. Appl. Phys. 98, 023517 (2005a)

    Article  CAS  Google Scholar 

  • I. Yonenaga, Dislocation–impurity interaction in Si. Mater. Sci. Eng. B 124–125, 293–296 (2005b)

    Article  CAS  Google Scholar 

  • I. Yonenaga, Growth and fundamental properties of SiGe bulk crystals. J. Cryst. Growth 275, 91–98 (2005c)

    Article  CAS  Google Scholar 

  • I. Yonenaga, Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors. Mater. Trans. 46, 1979–1985 (2005d)

    Article  CAS  Google Scholar 

  • I. Yonenaga, An overview of plasticity of Si crystals governed by dislocation motion. Eng. Fract. Mech. 147, 468–479 (2015)

    Article  Google Scholar 

  • I. Yonenaga, K. Sumino, Dislocation dynamics in the plastic deformation of silicon crystals I. Experiments. Phys. Status Solidi A 50, 685–693 (1978)

    Article  CAS  Google Scholar 

  • I. Yonenaga, K. Sumino, Influence of oxygen precipitation along dislocations on the strength of silicon crystals. J. Appl. Phys. 80, 734–738 (1996)

    Article  CAS  Google Scholar 

  • I. Yonenaga, K. Takahashi, Effect of magnetic field on dislocation-oxygen impurity interaction in silicon. J. Appl. Phys. 101, 053528 (2007)

    Article  CAS  Google Scholar 

  • I. Yonenaga, T. Taishi, X. Huang, K. Hoshikawa, Dynamic characteristics of dislocations in highly boron-doped silicon. J. Appl. Phys. 89, 5788–5790 (2001)

    Article  CAS  Google Scholar 

  • I. Yonenaga, T. Taishi, X. Huang, K. Hoshikawa, Dynamic characteristics of dislocations in Ge-doped and (Ge+B) codoped silicon. J. Appl. Phys. 93, 265–269 (2003)

    Article  CAS  Google Scholar 

  • X.-G. Yu, J. Chen, X.-Y. Ma, D. Yang, Impurity engineering of Czochralski silicon. Mater. Sci. Eng. R 74, 1–33 (2013)

    Article  Google Scholar 

  • T.-Y. Zhang, P. Haasen, The influence of ionized hydrogen on the brittle-to-ductile transition in silicon. Philos. Mag. A 60, 15–38 (1989)

    Article  CAS  Google Scholar 

  • B. Ziebarth, M. Mrovec, C. Elsässer, P. Gumbsch, Interstitial iron impurities at cores of dissociated dislocations in silicon. Phys. Rev. B 92, 195308 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author expresses his gratitude to his colleagues Profs. Y. Ohno, T. Taishi, K. Kutsukake, Drs. Y. Tokumoto, M. Deura for close and long-standing collaborations on dislocation researches in Si. This chapter is dedicated to the memory of Professor Malcolm I. Heggie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Yonenaga .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yonenaga, I. (2019). Defects in Crystalline Silicon: Dislocations. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_24

Download citation

Publish with us

Policies and ethics