Skip to main content

Nitrogen Impurity in Crystalline Silicon

  • Reference work entry
  • First Online:

Abstract

This chapter starts with the basic features of nitrogen including the existence of N-related defects, detection and measurements of N content, the solubility, and diffusion of N impurities in silicon materials. From the perspective of photovoltaic application, the nitrogen doping method for Czochralski silicon is then introduced, and the results about the influence of nitrogen impurity on N-O complexes, O-related defects, and mechanical properties are presented. A second focus of this chapter is toward N-related defects in directionally solidified photovoltaic multicrystalline silicon (mc-Si) materials. The existence and distribution of N-related defects, the formation, and influence of silicon nitride precipitates in mc-Si are comprehensively described. Then the results about mc-Si growth in ambient nitrogen are presented as an application to further understand the properties of nitrogen in mc-Si.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • C. Alpass, J. Murphy, R. Falster, P. Wilshaw, Nitrogen in silicon: diffusion at 500–750 °C and interaction with dislocations. Mater. Sci. Eng. B 159, 95–98 (2009)

    Article  CAS  Google Scholar 

  • H.C. Alt, H. Wagner, Piezospectroscopy of nitrogen-oxygen shallow donor complexes in silicon. Phys. Rev. B 82(11), 115203 (2010)

    Article  CAS  Google Scholar 

  • H.C. Alt, Y. Gomeniuk, F. Bittersberger, A. Kempf, D. Zemke, Analysis of electrically active N-O complexes in nitrogen-doped CZ silicon crystals by FTIR spectroscopy. Mater. Sci. Semicond. Process. 9(1–3), 114–116 (2006)

    Article  CAS  Google Scholar 

  • P.M. Anderson, in Nanoscale Materials and Modeling – Relations Among Processing, Microstructure and Mechanical Properties: Symposium held April 13–16, 2004, San Francisco, California, vol 821. Materials Research Society

    Google Scholar 

  • J. Bauer, O. Breitenstein, J.P. Rakotoniaina, Electronic activity of SiC precipitates in multicrystalline solar silicon. Phys. Status Solidi A 204(7), 2190–2195 (2007)

    Article  CAS  Google Scholar 

  • O. Breitenstein, J. Rakotoniaina, M.H. Al Rifai, M. Werner, Shunt types in crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 12(7), 529–538 (2004)

    Article  CAS  Google Scholar 

  • P.H. Bucksbaum, J. Bokor, Rapid melting and regrowth velocities in silicon heated by ultraviolet picosecond laser pulses. Phys. Rev. Lett. 53(2), 182 (1984)

    Article  CAS  Google Scholar 

  • T. Buonassisi, A.A. Istratov, M. Pickett, J.-P. Rakotoniaina, O. Breitenstein, M.A. Marcus, S.M. Heald, E.R. Weber, Transition metals in photovoltaic-grade ingot-cast multicrystalline silicon: assessing the role of impurities in silicon nitride crucible lining material. J. Cryst. Growth 287(2), 402–407 (2006)

    Article  CAS  Google Scholar 

  • D. Chakraborty, J. Mukerji, Characterization of silicon nitride single crystals and polycrystalline reaction sintered silicon nitride by microhardness measurements. J. Mater. Sci. 15(12), 3051–3056 (1980)

    Article  CAS  Google Scholar 

  • J. Chen, D. Yang, X. Ma, Z. Zeng, D. Tian, L. Li, D. Que, L. Gong, Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. J. Appl. Phys. 103(12), 123521 (2008)

    Article  CAS  Google Scholar 

  • L. Chen, X. Yu, P. Chen, P. Wang, X. Gu, J. Lu, D. Yang, Effect of oxygen precipitation on the performance of Czochralski silicon solar cells. Sol. Energy Mater. Sol. Cells 95(11), 3148–3151 (2011). https://doi.org/10.1016/j.solmat.2011.06.044

    Article  CAS  Google Scholar 

  • A. Clark, J.D. Macdougall, K.E. Manchester, P. Roughan, F. Anderson, Nitrogen Donor Level in Silicon, Bulletin of the American Physical Society, vol 3 (American Institute of Physics Circulation and Fulfillment Division, Woodbury, 1968), p. 376

    Google Scholar 

  • G. Du, L. Zhou, P. Rossetto, Y. Wan, Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon. Sol. Energy Mater. Sol. Cells 91(18), 1743–1748 (2007)

    Article  CAS  Google Scholar 

  • G. Du, N. Chen, P. Rossetto, Wire-sawing defects on multicrystalline silicon wafers grown by a directional solidification method. Semicond. Sci. Technol. 23(5), 055011 (2008)

    Article  CAS  Google Scholar 

  • C. Ewels, R. Jones, S. Öberg, J. Miro, P. Deak, Shallow thermal donor defects in silicon. Phys. Rev. Lett. 77(5), 865 (1996)

    Article  CAS  Google Scholar 

  • N. Fujita, R. Jones, J. Goss, P. Briddon, T. Frauenheim, S. Öberg, Diffusion of nitrogen in silicon. Appl. Phys. Lett. 87(2), 021902 (2005)

    Article  CAS  Google Scholar 

  • V. Ganapati, S. Schoenfelder, S. Castellanos, S. Oener, R. Koepge, A. Sampson, M.A. Marcus, B. Lai, H. Morhenn, G. Hahn, Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon. J. Appl. Phys. 108(6), 063528 (2010)

    Article  CAS  Google Scholar 

  • M. Ghosh, D. Yang, A. Lawerenz, S. Riedel, H. Moller, Investigation of minority carrier lifetime degradation in multicrystalline silicon ingots, in Proceedings of the 14th European Photovoltaic Solar Energy Conference, (1997), pp. 724–727

    Google Scholar 

  • J. Goss, I. Hahn, R. Jones, P. Briddon, S. Öberg, Vibrational modes and electronic properties of nitrogen defects in silicon. Phys. Rev. B 67(4), 045206 (2003)

    Article  CAS  Google Scholar 

  • J. Griffin, J. Hartung, J. Weber, H. Navarro, L. Genzel, Photothermal ionisation spectroscopy of oxygen-related shallow defects in crystalline silicon. Appl. Phys. A. 48(1), 41–47 (1989)

    Article  Google Scholar 

  • A. Hara, T. Fukuda, T. Miyabo, I. Hirai, Electron spin resonance of oxygen-nitrogen complex in silicon. Jpn. J. Appl. Phys. 28(1R), 142 (1989)

    Article  CAS  Google Scholar 

  • P. Hemment, R. Peart, M. Yao, K. Stephens, R. Chater, J. Kilner, D. Meekison, G. Booker, R. Arrowsmith, High quality silicon on insulator structures formed by the thermal redistribution of implanted nitrogen. Appl. Phys. Lett. 46(10), 952–954 (1985)

    Article  CAS  Google Scholar 

  • R. Hockett, Anomalous diffusion of nitrogen in nitrogen-implanted silicon. Appl. Phys. Lett. 54(18), 1793–1795 (1989)

    Article  CAS  Google Scholar 

  • R. Hockett, D. Sams, The measurement of nitrogen in silicon substrates by SIMS, in Proceedings-SPIE the International Society for Optical Engineering, 2000, (International Society for Optical Engineering, 1999), pp. 584–595

    Google Scholar 

  • S. Hu, W. Patrick, Effect of oxygen on dislocation movement in silicon. J. Appl. Phys. 46(5), 1869–1874 (1975)

    Article  CAS  Google Scholar 

  • T. Itoh, T. Abe, Diffusion coefficient of a pair of nitrogen atoms in float-zone silicon. Appl. Phys. Lett. 53(1), 39–41 (1988). https://doi.org/10.1063/1.100116

    Article  CAS  Google Scholar 

  • Y. Itoh, T. Nozaki, T. Masui, T. Abe, Calibration curve for infrared spectrophotometry of nitrogen in silicon. Appl. Phys. Lett. 47(5), 488–489 (1985)

    Article  CAS  Google Scholar 

  • R. Jones, C. Ewels, J. Goss, J. Miro, P. Deak, S. Oberg, F.B. Rasmussen, Theoretical and isotopic infrared absorption investigations of nitrogen-oxygen defects in silicon. Semicond. Sci. Technol. 9(11), 2145 (1994a)

    Article  Google Scholar 

  • R. Jones, S. Öberg, F.B. Rasmussen, B.B. Nielsen, Identification of the dominant nitrogen defect in silicon. Phys. Rev. Lett. 72(12), 1882 (1994b)

    Article  CAS  Google Scholar 

  • W. Kaiser, C. Thurmond, Nitrogen in silicon. J. Appl. Phys. 30(3), 427–431 (1959)

    Article  CAS  Google Scholar 

  • A. Karoui, G. Rozgonyi, Oxygen precipitation in nitrogen doped Czochralski silicon wafers. II. Effects of nitrogen and oxygen coupling. J. Appl. Phys. 96(6), 3264–3271 (2004)

    Article  CAS  Google Scholar 

  • H. Kusunoki, T. Ishizuka, A. Ogura, H. Ono, Complementary distribution of NN and NNO complexes in cast-grown multicrystalline silicon for photovoltaic cells. Appl. Phys. Express 4(11), 115601 (2011)

    Article  CAS  Google Scholar 

  • J. Li, R.R. Prakash, K. Jiptner, J. Chen, Y. Miyamura, H. Harada, K. Kakimoto, A. Ogura, T. Sekiguchi, Butterfly-shaped distribution of SiNx precipitates in multi-crystalline Si for solar cells. J. Cryst. Growth 377, 37–42 (2013)

    Article  CAS  Google Scholar 

  • J. Li, X. Yu, S. Yuan, L. Yang, Z. Liu, D. Yang, Effects of oxygen related thermal donors on the performance of silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 179, 17–21 (2018)

    Article  CAS  Google Scholar 

  • H. Lu, D. Yang, L. Li, Z. Ye, D. Que, Thermal warpage of Czochralski silicon wafers grown under a nitrogen ambience. Phys. Status Solidi A 169(2), 193–198 (1998)

    Article  CAS  Google Scholar 

  • G. Mannino, V. Privitera, S. Scalese, S. Libertino, E. Napolitani, P. Pichler, N.E. Cowern, Effect of oxygen on the diffusion of nitrogen implanted in silicon. Electrochem. Solid-State Lett. 7(8), G161–G163 (2004)

    Article  CAS  Google Scholar 

  • J. Murphy, A. Giannattasio, S. Senkader, R. Falster, P. Wilshaw, Nitrogen transport in float-zone and Czochralski silicon investigated by dislocation locking experiments. Phys. Status Solidi A 202(5), 926–930 (2005)

    Article  CAS  Google Scholar 

  • J.D. Murphy, C. Alpass, A. Giannattasio, S. Senkader, R. Falster, P. Wilshaw, Nitrogen in silicon: transport and mechanical properties. Nucl. Instrum. Methods Phys. Res., Sect. B 253(1), 113–117 (2006)

    Article  CAS  Google Scholar 

  • M. Nakatsu, A. Hashimoto, A. Natsume, N. Inoue, H. Ono, Measurement of nitrogen concentration in cz-si below 1014/cm3 by IR absorption spectroscopy, in High Purity Silicon VIII: Proceedings of the International Symposium, (The Electrochemical Society, 2004), p. 102

    Google Scholar 

  • J. Nelson, P. Schultz, A. Wright, Valence and atomic size dependent exchange barriers in vacancy-mediated dopant diffusion. Appl. Phys. Lett. 73(2), 247–249 (1998)

    Article  CAS  Google Scholar 

  • T. Nozaki, Y. Yatsurugi, N. Akiyama, Charged particle activation analysis for carbon, nitrogen and oxygen in semiconductor silicon. J. Radioanal. Nucl. Chem. 4(1), 87–98 (1970)

    Article  CAS  Google Scholar 

  • H. Ono, M. Horikawa, Quantitative detection of small amount of nitrogen in Czochralski-grown silicon crystals. Jpn. J. Appl. Phys. 42(3B), L261 (2003)

    Article  CAS  Google Scholar 

  • V. Orlov, H. Richter, A. Fischer, J. Reif, T. Müller, R. Wahlich, Mechanical properties of nitrogen-doped CZ silicon crystals. Mater. Sci. Semicond. Process. 5(4–5), 403–407 (2002)

    Article  CAS  Google Scholar 

  • P. Pavlov, E. Zorin, D. Tetelbaum, A. Khokhlov, Nitrogen as dopant in silicon and germanium. Phys. Status Solidi A 35(1), 11–36 (1976)

    Article  CAS  Google Scholar 

  • M. Porrini, M. Pretto, R. Scala, Measurement of nitrogen in Czochralski silicon by means of infrared spectroscopy. Mater. Sci. Eng. B 102(1), 228–232 (2003)

    Article  CAS  Google Scholar 

  • M. Qi, S. Tan, B. Zhu, P. Cai, W. Gu, X. Xu, T. Shi, D. Que, L. Li, The evidence for interaction of the N-N pair with oxygen in Czochralski silicon. J. Appl. Phys. 69(6), 3775–3777 (1991)

    Article  CAS  Google Scholar 

  • D. Que, X. Chen, Silicon Materials Science and Technology (Zhejiang University Press, Hangzhou, China, 2000). (in Chinese)

    Google Scholar 

  • D. Que, L. Li, Y. Lin, Nitrogen protective ambiance for Czochralski growth of silicon. Chinese Patent CN85100295, 1985

    Google Scholar 

  • D. Que, L. Li, X. Chen, Nitrogen gas doping in Czochralski silicon. Chinese Patent CN87105811, 1987

    Google Scholar 

  • D. Que, L. Li, X. Chen, Y. Lin, J. Zhang, X. Zhou, J. Yang, Czochralski silicon crystal growth in nitrogen atmosphere under reduced pressure. Sci. China Ser. A Math. Phys. Astron. Technol. Sci. 34(8), 1017–1024 (1991)

    CAS  Google Scholar 

  • C. Reimann, M. Trempa, J. Friedrich, G. Müller, About the formation and avoidance of C and N related precipitates during directional solidification of multi-crystalline silicon from contaminated feedstock. J. Cryst. Growth 312(9), 1510–1516 (2010)

    Article  CAS  Google Scholar 

  • S. Richter, J. Bauer, O. Breitenstein, Growth of carbon and nitrogen containing precipitates in crystalline solar silicon and their influence on solar cells. Phys. Status Solidi RRL 11(2), 1600354 (2017)

    Article  CAS  Google Scholar 

  • H. Sawada, H. Kawakami, First-principles calculation of the interaction between nitrogen atoms and vacancies in silicon. Phys. Rev. B 62(3), 1851 (2000)

    Article  CAS  Google Scholar 

  • H. Sawada, K. Kawakami, A. Ikari, W. Ohashi, Atomistic model of nitrogen-pair diffusion in silicon. Phys. Rev. B 65(7), 075201 (2002)

    Article  CAS  Google Scholar 

  • S. Schoenfelder, A. Bohne, J. Bagdahn, Comparison of test methods for strength characterization of thin solar wafer. in Proceedings of 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007, vol 7

    Google Scholar 

  • S. Schoenfelder, A. Sampson, V. Ganapati, R. Koepge, J. Bagdahn, T. Buonassisi, Quantitative stress measurements of bulk microdefects in multicrystalline silicon. 24th EUPVSEC:977–980 (2009)

    Google Scholar 

  • P.A. Schultz, J.S. Nelson, Fast through-bond diffusion of nitrogen in silicon. Appl. Phys. Lett. 78(6), 736–738 (2001)

    Article  CAS  Google Scholar 

  • L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371(1–3), 329–377 (2007)

    Article  CAS  Google Scholar 

  • A. Søiland, E. Øvrelid, T. Engh, O. Lohne, J. Tuset, Ø. Gjerstad, SiC and Si3N4 inclusions in multicrystalline silicon ingots. Mater. Sci. Semicond. Process. 7(1), 39–43 (2004)

    Article  CAS  Google Scholar 

  • N. Stoddard, P. Pichler, G. Duscher, W. Windl, Ab initio identification of the nitrogen diffusion mechanism in silicon. Phys. Rev. Lett. 95(2), 025901 (2005)

    Article  CAS  Google Scholar 

  • M. Suezawa, K. Sumino, H. Harada, T. Abe, Nitrogen-oxygen complexes as shallow donors in silicon crystals. Jpn. J. Appl. Phys. 25(10A), L859 (1986)

    Article  CAS  Google Scholar 

  • M. Suezawa, K. Sumino, H. Harada, T. Abe, The nature of nitrogen-oxygen complexes in silicon. Jpn. J. Appl. Phys. Part 1 27(1), 62–67 (1988). https://doi.org/10.1143/jjap.27.62

    Article  CAS  Google Scholar 

  • K. Sumino, I. Yonenaga, M. Imai, T. Abe, Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals. J. Appl. Phys. 54(9), 5016–5020 (1983)

    Article  CAS  Google Scholar 

  • Y. Tokumaru, H. Okushi, T. Masui, T. Abe, Deep levels associated with nitrogen in silicon. Jpn. J. Appl. Phys. 21(7A), L443 (1982)

    Article  Google Scholar 

  • M. Trempa, C. Reimann, J. Friedrich, G. Müller, The influence of growth rate on the formation and avoidance of C and N related precipitates during directional solidification of multi crystalline silicon. J. Cryst. Growth 312(9), 1517–1524 (2010)

    Article  CAS  Google Scholar 

  • L. Vandeperre, F. Giuliani, S. Lloyd, W. Clegg, The hardness of silicon and germanium. Acta Mater. 55(18), 6307–6315 (2007)

    Article  CAS  Google Scholar 

  • J. Vedde, P. Gravesen, The fracture strength of nitrogen doped silicon wafers. Mater. Sci. Eng. B 36(1–3), 246–250 (1996)

    Article  Google Scholar 

  • V.V. Voronkov, R.J. Falster, Nitrogen diffusion and interaction with oxygen in Si. in Solid State Phenomena, 2004. Trans Tech Publ, pp. 83–92

    Google Scholar 

  • P. Wagner, R. Oeder, W. Zulehner, Nitrogen-oxygen complexes in Czochralski-silicon. Appl. Phys. A 46(2), 73–76 (1988)

    Article  Google Scholar 

  • H. Wagner, H.C. Alt, W. von Ammon, F. Bittersberger, A. Huber, L. Koester, N-O related shallow donors in silicon: stoichiometry investigations. Appl. Phys. Lett. 91(15), 152102 (2007)

    Article  CAS  Google Scholar 

  • G. Wang, D. Yang, D. Li, Q. Shui, J. Yang, D. Que, Mechanical strength of nitrogen-doped silicon single crystal investigated by three-point bending method. Phys. B Condens. Matter 308, 450–453 (2001)

    Article  Google Scholar 

  • D. Yang, X. Yu, Nitrogen in Silicon. Defect Diffus. Forum 230–232, 199–220 (2004)

    Article  Google Scholar 

  • D. Yang, D. Que, K. Sumino, Nitrogen effects on thermal donor and shallow thermal donor in silicon. J. Appl. Phys. 77(2), 943–944 (1995)

    Article  CAS  Google Scholar 

  • D. Yang, R. Fan, L. Li, D. Que, K. Sumino, Effect of nitrogen–oxygen complex on electrical properties of Czochralski silicon. Appl. Phys. Lett. 68(4), 487–489 (1996)

    Article  CAS  Google Scholar 

  • D. Yang, X. Yu, D. Que, Nitrogen doping in casting multicrystalline silicon by melting feedstocks in nitrogen ambience. Chinese Patent CN101597790, 2009

    Google Scholar 

  • Y. Yatsurugi, N. Akiyama, Y. Endo, T. Nozaki, Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon. J. Electrochem. Soc. 120(7), 975–979 (1973)

    Article  CAS  Google Scholar 

  • I. Yonenaga, Dislocation–impurity interaction in Si. Mater. Sci. Eng. B 124, 293–296 (2005)

    Article  CAS  Google Scholar 

  • I. Yonenaga, K. Sumino, K. Hoshi, Mechanical strength of silicon crystals as a function of the oxygen concentration. J. Appl. Phys. 56(8), 2346–2350 (1984)

    Article  CAS  Google Scholar 

  • I. Yonenaga, T. Taishi, X. Huang, K. Hoshikawa, Dislocation–impurity interaction in Czochralski-grown Si heavily doped with B and Ge. J. Cryst. Growth 275(1–2), e501–e505 (2005)

    Article  CAS  Google Scholar 

  • X. Yu, D. Yang, X. Ma, J. Yang, L. Li, D. Que, Grown-in defects in nitrogen-doped Czochralski silicon. J. Appl. Phys. 92, 188–194 (2002)

    Article  CAS  Google Scholar 

  • X. Yu, D. Yang, K. Hoshikawa, Investigation of nitrogen behaviors during Czochralski silicon crystal growth. J. Cryst. Growth 318(1), 178–182 (2011)

    Article  CAS  Google Scholar 

  • X. Yu, J. Chen, X. Ma, D. Yang, Impurity engineering of Czochralski silicon. Mater. Sci. Eng. R. Rep. 74(1), 1–33 (2013)

    Article  Google Scholar 

  • S. Yuan, D. Hu, X. Yu, F. Zhang, H. Luo, L. He, D. Yang, Controllable Nitrogen Doping in Multicrystalline Silicon by Casting Under Low Cost Ambient Nitrogen. Silicon 1–6 (2018)

    Google Scholar 

  • H. Zhang, M. Stavola, M. Seacrist, Nitrogen-containing point defects in multi-crystalline Si solar-cell materials. J. Appl. Phys. 114(9), 093707 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the National Natural Science Foundation of China (Nos. 51532007, 61721005). It was also partly supported by Key Project of Zhejiang Province (No. 2018C01034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Yuan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yuan, S., Yang, D. (2019). Nitrogen Impurity in Crystalline Silicon. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_22

Download citation

Publish with us

Policies and ethics