Skip to main content

Growth of Crystalline Silicon for Solar Cells: Noncontact Crucible Method

  • Reference work entry
  • First Online:
Handbook of Photovoltaic Silicon
  • 1318 Accesses

Abstract

The noncontact crucible (NOC) method has the potential to be an advanced cast method. It is effective in obtaining Si single ingots with large diameter and volume using cast furnace, and solar cells manufactured with Si obtained this way have high yield and high conversion efficiency. Several novel characteristics of this method are explained based on the existence of a large low-temperature region in a Si melt, which is key to realize its enclosing potential as follows. The largest diameter ratio of 0.9 was obtained by expanding the low-temperature region in the Si melt. For p-type solar cells, the highest of 19.14% and the average conversion efficiencies of 19.0% were obtained for the NOC wafers, using the same solar cell structure and process to obtain the conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafers. The present method realized solar cells with conversion efficiency and yield as high as those of CZ solar cells using cast furnace for the first time. The latest information about the growth of Si ingots using the NOC method is explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D.F. Bliss, Evolution and application of the Kyropoulos crystal growth method, in: 50 Years Progress in Crystal Growth: A Reprint Collection, ed. by R.S. Feigelson (Elsevier, Amsterdam, 2004), pp. 29–33

    Google Scholar 

  • W.N. Borle, S. Tata, S.K. Varma, J. Cryst. Growth 8, 223 (1971)

    Article  Google Scholar 

  • S. Castellanos, M. Kivambe, M.A. Jensen, D.M. Powell, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, Science Direct, Energy Procedia 92, 779 (2016)

    Article  CAS  Google Scholar 

  • G. Coletti, P. Manshanden, S. Bernardini, P.C.P. Bronsveld, A. Gutjahr, Z. Hu, G. Li, Sol. Energy Mater. Sol. Cells 130, 647 (2014)

    Article  CAS  Google Scholar 

  • J. Czochralski, Z. Phys. Chem. 92, 219 (1917)

    CAS  Google Scholar 

  • W. Dash, C. J. Appl. Phys. 30, 459 (1959)

    Article  CAS  Google Scholar 

  • S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, V.V. Kalaev, Opt. Mater. 30, 62 (2007)

    Article  CAS  Google Scholar 

  • K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Acta Mater. 56, 2663 (2008)

    Article  CAS  Google Scholar 

  • A. Herguth, G. Schubert, M. Kaes, G. Hahn, in 21st EUPVSEC, p. 530, 2006

    Google Scholar 

  • M.A. Jensen, V. LaSalvia, A.E. Morishige, K. Nakajima, Y. Veschetti, F. Jay, A. Jouini, A. Youssef, P. Stradins, T. Buonassisi, in Silicon PV, 2016

    Google Scholar 

  • M. Kivambe, D.M. Powell, S. Castellanos, M.A. Jensen, A.E. Morishige, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, J. Cryst. Growth 407, 31 (2014)

    Article  CAS  Google Scholar 

  • E. Kuroda, S. Matsubara, T. Saitoh, Jpn. J. Appl. Phys. 19, L361 (1980a)

    Article  CAS  Google Scholar 

  • E. Kuroda, S. Matsubara, T. Saitoh, Jpn. J. Appl. Phys. 19, L361 (1980b)

    Article  CAS  Google Scholar 

  • C.W. Lan, in 6th World Conference on Photovoltaic Energy Conversion, 2014

    Google Scholar 

  • C.W. Lan, C. Hsu, K. Nakajima, Handbook of Crystal Growth, Bulk Crystal Growth: Basic Techniques Vol. II, Part a (Elsevier, Amsterdam, 2015), pp. 373–411

    Book  Google Scholar 

  • D. Macdonald, A. Cuevas, Sol. Energy Mater. Sol. Cells 65, 509 (2001)

    Article  CAS  Google Scholar 

  • W. Miller, C. Frank-Rotsch, M. Czupalla, P. Rudolph, Cryst. Res. Technol. 47, 285 (2012)

    Article  CAS  Google Scholar 

  • A. Muiznieks, A. Rudevics, K. Lacis, H. Riemann, A. Lüdge, F.W. Schulze, B. Nacke, in Proceedings of the International Scientific Colloquium, Modelling for Material, 2006, p. 89

    Google Scholar 

  • K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, N. Usami, J. Cryst. Growth 344, 6 (2012a)

    Article  CAS  Google Scholar 

  • K. Nakajima, K. Morishita, R. Murai, K. Kutsukake, J. Cryst. Growth 355, 38 (2012b)

    Article  CAS  Google Scholar 

  • K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, J. Cryst. Growth 372, 121 (2013)

    Article  CAS  Google Scholar 

  • K. Nakajima, R. Murai, K. Morishita, Jpn. J. Appl. Phys. 53, 025501–025501 (2014a)

    Article  Google Scholar 

  • K. Nakajima, K. Morishita, R. Murai, N. Usami, J. Cryst. Growth 389, 112 (2014b)

    Article  CAS  Google Scholar 

  • K. Nakajima, K. Morishita, R. Murai, J. Cryst. Growth 405, 44 (2014c)

    Article  CAS  Google Scholar 

  • K. Nakajima, R. Murai, S. Ono, K. Morishita, M. Kivambe, D.M. Powell, T. Buonassisi, Jpn. J. Appl. Phys. 54, 015504–015501 (2015)

    Article  Google Scholar 

  • K. Nakajima, S. Ono, R. Murai, Y. Kaneko, J. Electron. Mater. 45, 2837 (2016a)

    Article  CAS  Google Scholar 

  • K. Nakajima, S. Ono, Y. Kaneko, R. Murai, K. Shirasawa, T. Fukuda, H. Takato, in Proceedings of the 43th IEEE Photovoltaic Specialists Conference, 2016b, pp. 68–72

    Google Scholar 

  • K. Nakajima, S. Ono, Y. Kaneko, R. Mura, K. Shirasawa, T. Fukuda, H. Takato, S. Castellanos, M.A. Jensen, A. Youssef, T. Buonassisi, F. Jay, Y. Veschetti, A. Jouini, J. Cryst. Growth 468, 705 (2017)

    Article  CAS  Google Scholar 

  • J. Nelson, Physics of Solar Cells, Chapter 7 (Imperial College Press, London, 2003)

    Google Scholar 

  • G. Ratnieks, A. Muiznieks, A. Mühlbauer, J. Cryst. Growth 255, 227 (2003)

    Article  CAS  Google Scholar 

  • P.S. Ravishankar, Sol. Energy Mater. 12, 361 (1985)

    Article  CAS  Google Scholar 

  • P.J. Rudolph, Jpn. Assoc. Cryst. Growth 39, 8 (2012)

    Google Scholar 

  • P. Rudolph, M. Czupalla, B. Lux, F. Kirscht, C. Frank-Rotsch, W. Miller, M. Albrecht, J. Cryst. Growth 318, 249 (2011)

    Article  CAS  Google Scholar 

  • F. Secco d’Aragona, J. Electrochem. Soc. 119, 948 (1972)

    Article  Google Scholar 

  • R.A. Sinton, A. Cuevas, M. Stuckings, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996, p. 457

    Google Scholar 

  • W. Zulehner, J. Cryst. Growth 65, 189 (1983)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Nakajima .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nakajima, K. (2019). Growth of Crystalline Silicon for Solar Cells: Noncontact Crucible Method. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_14

Download citation

Publish with us

Policies and ethics