Skip to main content

Reaktoren für spezielle technisch-chemische Prozesse: Membranreaktoren

  • Living reference work entry
  • First Online:
Book cover Handbuch Chemische Reaktoren

Zusammenfassung

Die Zusammenführung von Reaktion und Trennung in einem System in Form eines Membranreaktors stellt eine Prozessintensivierung dar, über die verschiedene Vorteile generiert werden können. So kann beispielsweise ein schonender Rückhalt homogener Übergangsmetallkatalysatoren gepaart mit vergleichsweise geringem Energieverbrauch realisiert werden. Je nach Wirkprinzip können Membranreaktoren in Extraktoren, Kontaktoren und Distributoren eingeteilt werden. Extraktoren erlauben eine selektive Produktabtrennung aus einem Reaktionsgemisch, Kontaktoren bieten zwei nichtmischbaren Phasen eine definierte Phasengrenzfläche zum gegenseitigen Stoffaustausch innerhalb einer porösen Membran, und Distributoren ermöglichen eine gezielte Dosierung von Substraten. Innerhalb dieses Beitrags werden sowohl Grundlagen zur Anwendung von Membranen als auch Anwendungsbeispiele von Membranreaktoren aufgezeigt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Aasberg-Petersen, K., Nielsen, C.S., Jørgensen, S.L.: Membrane reforming for hydrogen. Catal. Today 46(2–3), 193–201 (1998). https://doi.org/10.1016/S0920-5861(98)00341-1

    Article  CAS  Google Scholar 

  • Aseem, A., Harold, M.P.: C2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor. Chem. Eng. Sci. 175, 199–207 (2018). https://doi.org/10.1016/j.ces.2017.09.035

    Article  CAS  Google Scholar 

  • Baerns, M., Behr, A., Brehm, A., Gmehling, J., Hinrichsen, K.-O., Hofmann, H., Palkovits, R., Onken, U., Renken, A.: Technische Chemie. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)

    Google Scholar 

  • Baker, R.W.: Membrane Technology and Applications, 3. Aufl. Wiley, Chichester (2012)

    Book  Google Scholar 

  • Barba, D., Giacobbe, F., de Cesaris, A., Farace, A., Iaquaniello, G., Pipino, A.: Membrane reforming in converting natural gas to hydrogen (part one). Int. J. Hydrog. Energy 33(14), 3700–3709 (2008). https://doi.org/10.1016/j.ijhydene.2008.04.038

    Article  CAS  Google Scholar 

  • Bartholomew, C.H., Farrauto, R.J.: Fundamentals of Industrial Catalytic Processes, 2. Aufl. Wiley, Hoboken (2010)

    Google Scholar 

  • Basile, A.B.., Gallucci, F. (Hrsg.): Membranes for Membrane Reactors: Preparation, Optimization, and Selection. Wiley, Chichester (2011)

    Google Scholar 

  • Basile, A.B.., Centi, G., Iaquaniello, G., de Falco, M.: Membrane Reactor Engineering: Applications for a Greener Process Industry. Wiley, Chichester (2016)

    Book  Google Scholar 

  • Behr, A.: Angewandte homogene Katalyse. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)

    Google Scholar 

  • Behr, A., Johnen, L., Rentmeister, N.: Novel palladium-catalysed hydroamination of myrcene and catalyst separation by thermomorphic solvent systems adv. Synth. Catal. 352(11–12), 2062–2072 (2010). https://doi.org/10.1002/adsc.201000283

    Article  CAS  Google Scholar 

  • Behr, A., Agar, D.W., Jörissen, J., Vorholt, A.J.: Einführung in die Technische Chemie, 2. Aufl. Springer Spektrum, Berlin (2016)

    Book  Google Scholar 

  • Boehler, M.A., Heisele, A., Seyfried, A., Grömping, M., Siegrist, H.: (NH4)2SO4 recovery from liquid side streams. Environ. Sci. Pollut. Res. 22(10), 7295–7305 (2015). https://doi.org/10.1007/s11356-014-3392-8

    Article  CAS  Google Scholar 

  • Darestani, M., Haigh, V., Couperthwaite, S.J., Millar, G.J., Nghiem, L.D.: Hollow fibre membrane contactors for ammonia recovery: current status and future developments. J. Environ. Chem. Eng. 5(2), 1349–1359 (2017). https://doi.org/10.1016/j.jece.2017.02.016

    Article  CAS  Google Scholar 

  • Diakov, V., Blackwell, B., Varma, A.: Methanol oxidative dehydrogenation in a catalytic packed-bed membrane reactor: experiments and model. Chem. Eng. Sci. 57(9), 1563–1569 (2002). https://doi.org/10.1016/S0009-2509(02)00031-3

    Article  CAS  Google Scholar 

  • Diban, N., Aguayo, A.T., Bilbao, J., Urtiaga, A., Ortiz, I.: Membrane reactors for in situ water removal: a review of applications ind. Eng. Chem. Res. 52(31), 10342–10354 (2013). https://doi.org/10.1021/ie3029625

    Article  CAS  Google Scholar 

  • Dittmeyer, R., Höllein, V., Daub, K.: Membrane reactors for hydrogenation and dehydrogenation processes based on supported palladium. J. Mol. Catal. A Chem. 173(1), 135–184 (2001). https://doi.org/10.1016/S1381-1169(01)00149-2

    Article  CAS  Google Scholar 

  • Dreimann, J.M.: Process Intensification in Homogeneous Catalysis – Catalyst Recovery via Thermomorphic Solvent Systems and Organic Solvent Nanofiltration. Dissertation, Verlag Dr. Hut (2017)

    Google Scholar 

  • Drioli, E., Fontananova, E.: Membrane reactors. In: Ullmann, F. (Hrsg.) Ullmann’s Encyclopedia of Industrial Chemistry, 7. Aufl., S. 32. Wiley, Hoboken (2005)

    Google Scholar 

  • Ermilova, M., Kucherov, A., Orekhova, N., Finashina, E., Kustov, L., Yaroslavtsev, A.: Ethane oxidative dehydrogenation to ethylene in a membrane reactor with asymmetric ceramic membranes. Chem. Eng. Process. Process Intensif. 126, 150–155 (2018). https://doi.org/10.1016/j.cep.2018.02.011

    Article  CAS  Google Scholar 

  • Gabelman, A., Hwang, S.-T.: Hollow fiber membrane contactors. J. Membr. Sci. 159(1), 61–106 (1999). https://doi.org/10.1016/S0376-7388(99)00040-X

    Article  CAS  Google Scholar 

  • Gallucci, F., Comite, A., Capannelli, G., Basile, A.: Steam reforming of methane in a membrane reactor: An industrial case study ind. Eng. Chem. Res. 45(9), 2994–3000 (2006). https://doi.org/10.1021/ie058063j

    Article  CAS  Google Scholar 

  • Gallucci, F., Basile, A., Hai, F.I.: Introduction – a review of membrane reactors. In: Basile, A., Gallucci, F. (Hrsg.) Membranes for Membrane Reactors, S. 1–61. Wiley, Chichester (2011)

    Google Scholar 

  • Gambo, Y., Jalil, A.A., Triwahyono, S., Abdulrasheed, A.A.: Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. J. Ind. Eng. Chem. 59, 218–229 (2018). https://doi.org/10.1016/j.jiec.2017.10.027

    Article  CAS  Google Scholar 

  • Genduso, G., Luis, P., van der Bruggen, B.: 19 – Pervaporation membrane reactors (PVMRs) for esterification. In: Membrane Reactors for Energy Applications and Basic Chemical Production: Woodhead Publishing Series in Energy, S. 565–603. Woodhead Publishing, Cambridge (2015)

    Chapter  Google Scholar 

  • Godini, H.R., Gili, A., Görke, O., Simon, U., Hou, K., Wozny, G.: Performance analysis of a porous packed bed membrane reactor for oxidative coupling of methane: structural and operational characteristics. Energy Fuel. 28(2), 877–890 (2014). https://doi.org/10.1021/ef402041b

    Article  CAS  Google Scholar 

  • Gorbunov, D.N., Volkov, A.V., Kardasheva, Y.S., Maksimov, A.L., Karakhanov, E.A.: Hydroformylation in petroleum chemistry and organic synthesis: implementation of the process and solving the problem of recycling homogeneous catalysts (Review). Pet. Chem. 55(8), 587–603 (2015). https://doi.org/10.1134/S0965544115080046

    Article  CAS  Google Scholar 

  • Gulik, G.J.S. van der, Janssen, R.E.G., Wijers, J.G., Keurentjes, J.T.F.: Hydrodynamics in a ceramic pervaporation membrane reactor for resin production Chem. Eng. Sci. 56(2), 371–379 (2001). https://doi.org/10.1016/S0009-2509(00)00238-4

    Article  CAS  Google Scholar 

  • Ismail, A.F., Padaki, M., Hilal, N., Matsuura, T., Lau, W.J.: Thin film composite membrane – recent development and future potential. Desalination 356, 140–148 (2015). https://doi.org/10.1016/j.desal.2014.10.042

    Article  CAS  Google Scholar 

  • Iulianelli, A., Ribeirinha, P., Mendes, A., Basile, A.: Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review. Renew. Sust. Energ. Rev. 29, 355–368 (2014). https://doi.org/10.1016/j.rser.2013.08.032

    Article  CAS  Google Scholar 

  • Jansen, J.C., Drioli, E.: Poly(ether ether ketone) derivative membranes – a review of their preparation, properties and potential Polym. Sci. Ser. A. 51(11–12), 1355–1366 (2009). https://doi.org/10.1134/S0965545X09110200

    Article  Google Scholar 

  • Janssen, M., Wilting, J., Müller, C., Vogt, D.: Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angew. Chem. Int. Ed. 49(42), 7738–7741 (2010a). https://doi.org/10.1002/anie.201001926

    Article  CAS  Google Scholar 

  • Janssen, M., Müller, C., Vogt, D.: Molecular weight enlargement – a molecular approach to continuous homogeneous catalysis. Dalton Trans. 39(36), 8403–8411 (2010b). https://doi.org/10.1039/c0dt00175a

    Article  CAS  PubMed  Google Scholar 

  • Janssen, M., Müller, C., Vogt, D.: Recent advances in the recycling of homogeneous catalysts using membrane separation. Green Chem. 13(9), 2247 (2011). https://doi.org/10.1039/c1gc15264e

    Article  CAS  Google Scholar 

  • Jennings, J.F., Binning, R.: Organic chemical reactions involving liberation of water US2956070A, 11.Oct 1960 (1958)

    Google Scholar 

  • Kalogerakis, N., Behie, L.A.: Evaluation of a hollow fiber oxygenator for use in bubble-free mammalian cell bioreactors Can. J. Chem. Eng. 69(2), 444–449 (1991). https://doi.org/10.1002/cjce.5450690207

    Article  CAS  Google Scholar 

  • Kamer, P.C.J., Vogt, D., Thybaut, J.W. (Hrsg.): Contemporary Catalysis: Science, Technology, and Applications. Royal Society of Chemistry, London (2017)

    Google Scholar 

  • Keller, G.E., Bhasin, M.M.: Synthesis of ethylene via oxidative coupling of methane I. Determination of active catalysts. J. Catal. 73(1), 9–19 (1982). https://doi.org/10.1016/0021-9517(82)90075-6

    Article  CAS  Google Scholar 

  • Koros, W.J., Ma, Y.H., Shimidzu, T.: Terminology for membranes and membrane processes (IUPAC Recommendations 1996). Pure Appl. Chem. 68(7) (1996). https://doi.org/10.1351/pac199668071479

    Article  CAS  Google Scholar 

  • Kraume, M., Peters, T.: Entwicklungen und Perspektiven druckgetriebener Membranverfahren. Chem. Ing. Tech. 77(5), 473–485 (2005). https://doi.org/10.1002/cite.200500037

    Article  CAS  Google Scholar 

  • Maia Filho, D.C., Salim, V.M.M., Borges, C.P.: Membrane contactor reactor for transesterification of triglycerides heterogeneously catalyzed. Chem. Eng. Process. Process Intensif. 108, 220–225 (2016). https://doi.org/10.1016/j.cep.2016.08.001

    Article  CAS  Google Scholar 

  • Marchetti, P., Jimenez Solomon, M.F., Szekely, G., Livingston, A.G.: Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114(21), 10735–10806 (2014). https://doi.org/10.1021/cr500006j

    Article  CAS  PubMed  Google Scholar 

  • Melin, T., Rautenbach, R.: Membranverfahren: Grundlagen der Modul- und Anlagenauslegung. VDI-Buch, 3. Aufl. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  • Müller, C., Vogt, D.: Immobilization and compartmentalization of homogeneous catalysts. In: Anastas, P.T., Crabtree, R.H. (Hrsg.) Green Catalysis; Volume 1: Homogeneous catalysis. Handbook of Green Chemistry, S. 127–152. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  • Pearce, G.K.: Esterification process EP0210055A1, 28.01.1987

    Google Scholar 

  • Peeva, L.G., Arbour, J., Livingston, A.G.: On the potential of organic solvent nanofiltration in continuous heck coupling reactions. Org. Process Res. Dev. 17(7), 967–975 (2013). https://doi.org/10.1021/op400073p

    Article  CAS  Google Scholar 

  • Ronde, N.J., Vogt, D.: Separation by size-exclusion filtration. In: Cole-Hamilton, D.J., Tooze, R.P. (Hrsg.) Catalyst Separation, Recovery and Recycling: Chemistry and Process Design. Catalysis by Metal Complexes, Bd. 30, S. 73–104. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  • Sanchez Marcano, J.G., Tsotsis, T.T.: Catalytic Membranes and Membrane Reactors. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2010)

    Google Scholar 

  • Seidel-Morgenstern, A.: Analysis and experimental investigation of catalytic membrane reactors. In: Sundmacher, K., Kienle, A., Seidel-Morgenstern, A. (Hrsg.) Integrated Chemical Processes, S. 359–389. Wiley-VCH, Weinheim (2005)

    Chapter  Google Scholar 

  • Silva Burgal, J. da, Peeva, L., Marchetti, P., Livingston, A.: Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. J. Membr. Sci. 493, 524–538 (2015a). https://doi.org/10.1016/j.memsci.2015.07.012

    Article  Google Scholar 

  • Silva Burgal, J. da, Peeva, L.G., Kumbharkar, S., Livingston, A.: Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes J. Membr. Sci. 479, 105–116 (2015b). https://doi.org/10.1016/j.memsci.2014.12.035

    Article  CAS  Google Scholar 

  • Silva Burgal, J. da, Peeva, L., Livingston, A.: Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing J. Membr. Sci. 525, 48–56 (2017). https://doi.org/10.1016/j.memsci.2016.10.015

    Article  CAS  Google Scholar 

  • Sundmacher, K., Kienle, A., Seidel-Morgenstern, A. (Hrsg.): Integrated Chemical Processes: Synthesis, Operation, Analysis, and Control. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005)

    Google Scholar 

  • Tan, X., Li, K.: Applications of dense ceramic membrane reactors in selected oxidation and dehydrogenation processes for chemical production. In: Basile, A. (Hrsg.) Reactor Types and Industrial Applications. Woodhead Publishing series in energy, Bd. 56, S. 347–383. Woodhead Publ, Oxford (2013)

    Google Scholar 

  • Uragami, T.: Science and Technology of Separation Membranes. Wiley, Chichester/West Sussex (2017)

    Book  Google Scholar 

  • Vaart, R. van der, Akkerhuis, J., Feron, P., Jansen, B.: Removal of mercury from gas streams by oxidative membrane gas absorption J. Membr. Sci. 187(1), 151–157 (2001). https://doi.org/10.1016/S0376-7388(01)00339-8

    Article  CAS  Google Scholar 

  • Vogelsang, D., Dreimann, J.M., Wenzel, D., Peeva, L., da Silva Burgal, J., Livingston, A.G., Behr, A., Vorholt, A.J.: Continuously operated hydroamination – toward high catalytic performance via organic solvent nanofiltration in a membrane reactor. Ind. Eng. Chem. Res. 56(46), 13634–13641 (2017). https://doi.org/10.1021/acs.iecr.7b03770

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Vogt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vogt, D., Dreimann, J.M., Peters, M. (2018). Reaktoren für spezielle technisch-chemische Prozesse: Membranreaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics