Skip to main content

Reaktoren für Dreiphasen-Reaktionen: Rieselbettreaktoren

  • Living reference work entry
  • First Online:
  • 838 Accesses

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Zusammenfassung

Der Einfluss von betrieblichen Bedingungen, Katalysatoreigenschaften und Reaktorabmessungen auf das Verhalten von Rieselbettreaktoren für heterogen-katalysierte Gas-Flüssig-Reaktionen wird illustriert. Dabei liegt der Schwerpunkt auf der Beschreibung der komplexen Hydrodynamik und der Transportprozesse sowie deren Berücksichtigung bei der Reaktormodellierung. Zusätzlich werden Aspekte der Prozessentwicklung auf Basis von Laborexperimenten beleuchtet und Kriterien zur Bewertung der Abweichung vom idealen Rohrreaktor diskutiert. Zur Überwindung von Stofftransportlimitierungen werden Intensivierungskonzepte für Rieselbettreaktoren vorgestellt.

Der Beitrag wurde in einer vorigen Version versehentlich vorab veröffentlicht und wurde korrigiert.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Die Korrelationen zu Hydrodynamik und Stofftransport basierend auf dem neuronalen Netz von der Gruppe um Prof. Larachi (Universität Laval, Kanada) sind in einem Simulator implementiert (http://www2.gch.ulaval.ca/flarachi/pbrsimul/).

Literatur

  • Al-Dahhan, M.H., Dudukovic, M.P.: Catalyst bed dilution for improving catalyst wetting in laboratory trickle-bed reactors. AIChE J. 42, 2594–2606 (1996)

    CAS  Google Scholar 

  • Al-Dahhan, M.H., Highfill, W.: Liquid holdup measurement techniques in laboratory high pressure trickle bed reactors. Can. J. Chem. Eng. 77, 759–765 (1999)

    CAS  Google Scholar 

  • Al-Dahhan, M.H., Larachi, F., Dudukovic, M.P., Laurent, A.: High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)

    CAS  Google Scholar 

  • Al-Dahhan, M.H., Wu, Y., Dudukovic, M.P.: Reproducible technique for packing laboratory-scale trickle-bed reactors. Ind. Eng. Chem. Res. 34, 741–747 (1995)

    CAS  Google Scholar 

  • Alicilar, A., Bicer, A., Murathan, A.: The relation between wetting efficiency and liquid holdup in packed columns. Chem. Eng. Commun. 128, 95–107 (1994)

    Google Scholar 

  • Anadon, L.D., Sederman, A.J., Gladden, F.L.: Rationalising MRI, conductance and pressure drop measurements of the trickle-to-pulse transition in trickle beds. Chem. Eng. Sci. 63, 4640–4648 (2008)

    CAS  Google Scholar 

  • Ancheyta, J., Marroquin, G., Angeles, M.J., Macias, M.J., Pitault, I., Forisser, M., Morales, R.D.: Some experimental observation of mass transfer limitation in a trickle-bed hydrotreating pilot reactor. Energy Fuel 16, 1059–1067 (2002)

    CAS  Google Scholar 

  • Anderson, J.B.: A criterion for isothermal behavior of catalyst pellet. Chem. Eng. Sci. 18, 147–148 (1963)

    CAS  Google Scholar 

  • Aris, R.: Notes on the diffusion-type model for longitudinal mixing in flows. Chem. Eng. Sci. 9, 266–267 (1959)

    Google Scholar 

  • Atta, A., Hamidipour, M., Roy, S., Nigam, K.D.P., Larachi, F.: Propagation of slow/fast-mode solitary liquid waves in trickle beds via electrical capacitance tomography and computational fluid dynamics. Chem. Eng. Sci. 65, 1144–1150 (2010a)

    CAS  Google Scholar 

  • Atta, A., Schubert, M., Nigam, K.D.P., Roy, S., Larachi, F.: Co-current descending two-phase flow in inclined packed beds: experiments versus simulations. Can. J. Chem. Eng. 88, 742–750 (2010b)

    CAS  Google Scholar 

  • Atta, A., Roy, S., Larachi, F., Nigam, K.D.P.: Cyclic operation of trickle bed reactors: a review. Chem. Eng. Sci. 115, 205–214 (2014)

    CAS  Google Scholar 

  • Atta, A., Roy, S., Nigam, K.D.P.: Prediction of pressure drop and liquid holdup in trickle bed reactor using relative permeability concept in CFD. Chem. Eng. Sci. 62, 5870–5879 (2007a)

    CAS  Google Scholar 

  • Atta, A., Roy, S., Nigam, K.D.P.: Investigation of liquid maldistribution in trickle-bed reactors using porous media concept in CFD. Chem. Eng. Sci. 62, 7033–7044 (2007b)

    CAS  Google Scholar 

  • Attou, A., Boyer, C.: Hydrodynamics of gas-liquid-solid trickle-bed reactors: a critical review. Oil Gas Sci. Technol. 54, 29–66 (1999)

    CAS  Google Scholar 

  • Attou, A., Boyer, C., Ferschneider, G.: Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor. Chem. Eng. Sci. 54, 785–802 (1999)

    CAS  Google Scholar 

  • Attou, A., Ferschneider, G.: A two-fluid hydrodynamic model for the transition between trickle and pulse flow in a cocurrent gas-liquid packed-bed reactor. Chem. Eng. Sci. 55, 491–511 (2000)

    CAS  Google Scholar 

  • Aydin, B., Bilodeau, S., Hamidipour, M., Larachi, F., Kleitz, F.: Polymer-filled composite porous catalytic particles for hydrodynamic studies in trickle-bed reactors. Ind. Eng. Chem. Res. 47, 2569–2578 (2008)

    CAS  Google Scholar 

  • Babcock, B.D., Mejdell, G.T., Hougen, O.A.: Catalyzed gas-liquid reactions in trickling-bed reactors. 1. Hydrogenation of α-methylstyrene catalyzed by palladium. AIChE J. 3, 366–369 (1957)

    CAS  Google Scholar 

  • Banchero, M., Manna, L., Sicardi, S., Ferri, A.: Experimental investigation of fast-mode liquid modulation in a trickle-bed reactor. Chem. Eng. Sci. 59, 4149–4154 (2004)

    CAS  Google Scholar 

  • Battsengel, B., Datsevich, L.B., Jess, A., Munnich, C., Peter, S., Turek, T.: Use of a two-phase reactor with pre-saturator for multiphase reactions. Chem. Ing. Tech. 75, 553–558 (2003)

    CAS  Google Scholar 

  • Baussaron, L., Julcour-Lebigue, C., Wilhelm, A.-M., Boyer, C., Delmas, H.: Partial wetting in trickle bed reactors: measurement techniques and global wetting efficiency. Ind. Eng. Chem. Res. 46, 8397–8405 (2007)

    CAS  Google Scholar 

  • Bej, S.K., Dabral, R.P., Gupta, P.C., Mittal, K.K., Sen, G.S., Kapoor, V.K., Dalai, A.K.: Studies on the performance of a microscale trickle bed reactor using different size of diluent. Energy Fuel 14, 701–705 (2000)

    CAS  Google Scholar 

  • Bellussi, G., Pazzuconi, G., Perego, C., Girotti, G., Terzoni, G.: Liquid-phase alkylation of benzene with light olefins catalyzed by β-zeolites. J. Catal. 157, 227–234 (1995)

    CAS  Google Scholar 

  • Beziat, J.-C., Besson, M., Gallezot, P., Durecu, S.: Catalytic wet air oxidation on a Ru/TiO2 catalyst in a trickle-bed reactor. Ind. Eng. Chem. Res. 38, 1310–1315 (1999)

    CAS  Google Scholar 

  • Bieberle, A., Schubert, M., da Silva, M.J., Hampel, U.: Measurement of liquid distributions in particle packings using wire-mesh sensor versus transmission tomographic imaging. Ind. Eng. Chem. Res. 49, 9445–9453 (2010)

    CAS  Google Scholar 

  • Blok, J.R., Varkevisser, J., Drinkenburg, A.A.H.: Transition to pulsing flow, holdup and pressure drop in packed columns with cocurrent gas-liquid downflow. Chem. Eng. Sci. 38, 687–699 (1983)

    CAS  Google Scholar 

  • Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: Particle–liquid heat transfer in trickle-bed reactors. Chem. Eng. Sci. 56, 1181–1187 (2001a)

    CAS  Google Scholar 

  • Boelhouwer, J.G., Piepers, H.W., Drinkenburg, A.A.H.: The induction of pulses in trickle-bed reactors by cycling the liquid feed. Chem. Eng. Sci. 56, 2605–2614 (2001b)

    CAS  Google Scholar 

  • Borremans, D., Rode, S., Wild, G.: Liquid flow distribution and particle-fluid heat transfer in trickle-bed reactors: the influence of periodic operation. Chem. Eng. Process. 43, 1403–1410 (2004)

    CAS  Google Scholar 

  • Boyer, C, Duquenne, A.M., Wild, G.: Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci. 57, 3185–3215 (2002)

    CAS  Google Scholar 

  • Boyer, C., Koudil, A., Chen, P., Dudukovic, M.P.: Study of liquid spreading from a point source in a trickle bed via gamma-ray tomography and CFD simulation. Chem. Eng. Sci. 60, 6279–6288 (2005)

    CAS  Google Scholar 

  • Buffham, B.A., Gibilaro, L.G., Rathor, M.N.: A probabilistic time delay description of flow in packed beds. AIChE J. 16, 218–223 (1970)

    CAS  Google Scholar 

  • Bukur, D.B., Patel, S.A., Lang, X.S.: Fixed-bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst. Appl. Catal. 61, 329–349 (1990)

    CAS  Google Scholar 

  • Burghardt, A., Kolodziej, A.S.: Dynamic method for determining of liquid-solid contacting efficiency in trickle-bed reactors. Chem. Process. Eng-Inz. 11, 553–573 (1990)

    CAS  Google Scholar 

  • Burghardt, A., Kolodziej, A.S., Jaroszynski, M.: Experimental studies of liquid solid wetting efficiency in trickle-bed cocurrent reactors. Chem. Eng. Process. 28, 35–49 (1990)

    CAS  Google Scholar 

  • Burghardt, A., Zaleski, T.: Longitudinal dispersion at small and large Péclet numbers in chemical flow reactors. Chem. Eng. Sci. 23, 575–591 (1968)

    CAS  Google Scholar 

  • Cassanello, M., Larachi, F., Laurent, A., Wild, G., Midoux, N.: Gas-liquid mass transfer in high pressure trickle-bed reactors: experiments and modelling. In: von Rohr, P.R., Trepp, C. (Hrsg.) High Pressure Chemical Engineering, Bd. 12, S. 493–498. Elsevier, Amsterdam (1996)

    Google Scholar 

  • Castellari, A.T., Haure, P.M.: Experimental study of the periodic operation of a trickle-bed reactor. AIChE J. 41, 1593–1597 (1995)

    CAS  Google Scholar 

  • Chan, J.-C., Tan, C.-S.: Hydrogenation of tetralin over Pt/γ-Al2O3 in trickle-bed reactor in the presence of compressed CO2. Energy Fuel 20, 771–777 (2006)

    CAS  Google Scholar 

  • Charpentier, J.C., Favier, M.: Some liquid holdup experimental data in trickle-bed reactors for foaming and nonfoaming hydrocarbons. AIChE J. 21, 1213–1218 (1975)

    CAS  Google Scholar 

  • Chaudhari, R.V., Jaganathan, R., Mathew, S.P., Julcour, C., Delmas, H.: Hydrogenation of 1,5,9-cyclododecatriene in fixed-bed reactors: down- vs. upflow modes. AIChE J. 48, 110–125 (2002)

    CAS  Google Scholar 

  • Chaudhari, R.V., Ramachandran, P.A.: Three-phase slurry reactors. AIChE J. 26, 177–201 (1980)

    CAS  Google Scholar 

  • Colombo, A.J., Baldi, G., Sicardi, S.: Solid-liquid contacting effectiveness in trickle bed reactors. Chem. Eng. Sci. 31, 1101–1108 (1976)

    CAS  Google Scholar 

  • Couto, C.S., Madeira, L.M., Nunes, C.P., Araújo, P.: Liquid-phase hydrogenation of nitrobenzene in a tubular reactor: parametric study of the operating conditions influence. Ind. Eng. Chem. Res. 56, 3231–3242 (2017)

    CAS  Google Scholar 

  • Crine, M.: Heat-transfer phenomena in trickle-bed reactors. Chem. Eng. Commun. 19, 99–114 (1982)

    CAS  Google Scholar 

  • Crine, M., Marchot, P.: Measuring dynamic liquid holdup in trickle-bed reactors under actual operating conditions. Chem. Eng. Commun. 8, 365–371 (1981)

    CAS  Google Scholar 

  • Cybulski, A., Moulijn, J.A.: Structured Catalysts and Reactors, 2. Aufl. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  • Dashliborun, A.M., Härting, H.-U., Schubert, M., Larachi, F.: Process intensification of gas-liquid downflow and upflow packed beds by a new low-shear rotating reactor concept. AIChE J. 63, 283–294 (2017)

    Google Scholar 

  • Dashliborun, A.M., Larachi, F.: CFD study and experimental validation of multiphase packed bed hydrodynamics in the context of rolling sea conditions. AIChE J. 65, 385–397 (2019)

    Google Scholar 

  • Datsevich, L.B., Mukhortov, D.A.: Pre-saturation in multiphase fixed-bed reactors as a method for process intensification/reactor minimization. Catal. Today 120, 71–77 (2007)

    CAS  Google Scholar 

  • Dhiman, S.K., Verma, V., Rao, D.P., Rao, M.S.: Process intensification in a trickle-bed reactor: experimental studies. AIChE J. 51, 3186–3192 (2005)

    CAS  Google Scholar 

  • Dietrich, W., Grünewald, M., Agar, D.W.: Dynamic modelling of periodically wetted catalyst particles. Chem. Eng. Sci. 60, 6254–6261 (2005)

    CAS  Google Scholar 

  • Dixon, A.G., Nijemaisland, M., Stitt, E.H.: Packed tubular reactor modelling and catalyst design using computational fluid dynamics. Adv. Chem. Eng. 31, 307–389 (2006)

    CAS  Google Scholar 

  • Dudas, J., Hanika, J., Lepuru, J., Barkhuysen, M.: Thymol hydrogenation in bench scale trickle bed reactor. Chem. Biochem. Eng. Q. 19, 255–262 (2005)

    CAS  Google Scholar 

  • Dudukovic, M.P., Larachi, F., Mill, P.L.: Multiphase catalytic reactors: a perspective on current knowledge and future trends. Catal. Rev. 44, 123–246 (2002)

    CAS  Google Scholar 

  • Dudukovic, M.P., Mills, P.L.: Contacting and hydrodynamics in trickle-bed reactors. In: Cheremisinoff, N.P. (Hrsg.) Encyclopedia of Fluid Mechanics, Bd. 3, S. 969–1017. Gulf Publishing, Houston (1986)

    Google Scholar 

  • Edvinsson, A.R., Nyström, M., Siverström, M., Sellin, A., Dellve, A.-C., Andersson, U., Herrmann, W., Berglin, T.: Development of a monolith-based process for H2O2 production: from idea to large-scale implementation. Catal. Today 69, 247–252 (2001)

    Google Scholar 

  • El-Hisnawi, A.A., Dudukovic, M.P., Mills, P.L.: Trickle-bed reactors – dynamic tracer tests, reaction studies, and modeling of reactor performance. ACS Symp. Ser. 196, 421–440 (1982)

    CAS  Google Scholar 

  • Ellman, M.J., Midoux, N., Laurent, A., Charpentier, J.C.: A new, improved pressure-drop correlation for trickle-bed reactors. Chem. Eng. Sci. 43, 2201–2206 (1988)

    CAS  Google Scholar 

  • Ellman, M.J., Midoux, N., Wild, G., Laurent, A., Charpentier, J.C.: A new, improved liquid hold-up correlation for trickle-bed reactors. Chem. Eng. Sci. 45, 1677–1684 (1990)

    CAS  Google Scholar 

  • Enache, D.I., Landon, P., Lok, C.M., Pollington, S.D., Stitt, E.H.: Direct comparison of a trickle bed and a monolith for hydrogenation of pyrolysis gasoline. Ind. Eng. Chem. Res. 44, 9431–9439 (2005)

    CAS  Google Scholar 

  • Fahien, R.W., Stankovic, I.M.: An equation for the velocity profile in packed columns. Chem. Eng. Sci. 34, 1350–1354 (1979)

    CAS  Google Scholar 

  • Fordham, P., Besson, M., Gallezot, P.: Selective catalytic oxidation with air of glycerol and oxygenated derivatives on platinum metals. In: Hightower, J., Delgass, W.N., Iglesia, E., Bell, A.T. (Hrsg.) Studies in Surface Science and Catalysis, Bd. 101, S. 161–170. Elsevier, Amsterdam (1996)

    Google Scholar 

  • Fortuny, A., Font, J., Fabregat, A.: Wet air oxidation of phenol using active carbon as catalyst. Appl Catal B. 19, 165–173 (1998)

    CAS  Google Scholar 

  • Freund, H., Lämmermann, M., Busse, C., Schwieger, W.: Additive manufacturing of tailor-made catalytic reactors for single phase and multiphase reaction systems. 25th international symposium on chemical reaction engineering, Florence (2018)

    Google Scholar 

  • Fu, M.S., Tan, C.S.: Liquid holdup and axial dispersion in trickle-bed reactors. Chem. Eng. Sci. 51, 5357–5361 (1996)

    CAS  Google Scholar 

  • Fukushima, S., Kusaka, K.: Interfacial area and boundary of hydrodynamic flow region in packed column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 461–467 (1977a)

    CAS  Google Scholar 

  • Fukushima, S., Kusaka, K.: Liquid-phase volumentric and mass-transfer coefficient and boundary of hydrodynamic flow region in packed-column with concurrent downward flow. J. Chem. Eng. Jpn. 10, 468–474 (1977b)

    CAS  Google Scholar 

  • Gallezot, P., Nicolaus, N., Flèche, G., Fuertes, P., Perrard, A.: Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J. Catal. 180, 51–55 (1998)

    CAS  Google Scholar 

  • Garcia, G.E.C., van der Schaaf, J., Kiss, A.A.: A review on process intensification in HiGee distillation. J. Chem. Eng. Technol. Biotechnol. 92, 1136–1156 (2017)

    Google Scholar 

  • Garcia-Serna, J., Gallina, G., Biasi, P., Salmi, T.: Liquid holdup by gravimetric recirculation continuous measurement method. Application to trickle bed reactors under pressure at laboratory scale. Ind. Eng. Chem. Res. 56, 13.295–13.301 (2017)

    Google Scholar 

  • Gascon, J., van Ommen, J.R., Moulijn, J.A., Kapteijn, F.: Structuring catalyst and reactor – an inviting avenue to process intensification. Cat. Sci. Technol. 5, 807–817 (2015)

    CAS  Google Scholar 

  • Gelhausen, M.G., Yang, S.Q., Cegla, M., Agar, D.W.: Cyclic mass transport phenomena in a novel reactor for gas-liquid-solid contacting. AIChE J. 63, 208–215 (2017)

    CAS  Google Scholar 

  • Germain, A.H., LeFebvre, A.G., L’Homme, G.A.: Experimental study of a catalytic trickle bed reactor. Adv. Chem. Ser. 133, 164–180 (1974)

    CAS  Google Scholar 

  • Gianetto, A., Berruti, F.: Modelling of trickle bed reactors. In: de Lasa, H.I. (Hrsg.) Chemical Reactor Design and Technology NATO ASI Series 110, S. 631–685. Springer, Dordrecht (1986)

    Google Scholar 

  • Gianetto, A., Specchia, V.: Trickle-bed reactors – state of art and perspectives. Chem. Eng. Sci. 47, 3197–3213 (1992)

    CAS  Google Scholar 

  • Gianetto, A., Specchia, V., Baldi, G.: Absorption in packed towers with concurrent downward high-velocity flows. 2. Mass-transfer. AIChE J. 19, 916–922 (1973)

    CAS  Google Scholar 

  • Gierman, H.: Design of laboratory hydrotreating reactors – scaling down of trickle-flow reactors. Appl. Catal. 43, 277–286 (1988)

    CAS  Google Scholar 

  • Gladden, L.F., Lim, M.H.M., Mantle, M.D., Sederman, A.J., Stitt, E.H.: MRI visualisation of two-phase flow in structured supports and trickle-bed reactors. Catal. Today 79, 203–210 (2003)

    Google Scholar 

  • Goto, S., Chatani, T., Matouq, M.H.: Hydration of 2-methyl-2-butene in gas-liquid cocurrent upflow and downflow reactors. Can. J. Chem. Eng. 71, 821–823 (1993)

    CAS  Google Scholar 

  • Goto, S., Levec, J., Smith, J.M.: Mass-transfer in packed-beds with two-phase flow. Ind. Eng. Chem. Proc. Des. Dev. 14, 473–478 (1975)

    CAS  Google Scholar 

  • Goto, S., Smith, J.M.: Trickle-bed reactor performance. 1. Holdup and mass-transfer effects. AIChE J. 21, 706–713 (1975)

    CAS  Google Scholar 

  • Govindarao, V.M.H., Fromet, G.F.: Voidage profiles in packed beds of spheres. Chem. Eng. Sci. 41, 553–539 (1986)

    Google Scholar 

  • Govindarao, V.M.H., Murthy, K.V.R.: Liquid-phase hydrogenation of aniline in a trickle bed reactor. J. Appl. Chem. Biotechnol. 25, 169–181 (1975)

    CAS  Google Scholar 

  • Grosser, K., Carbonell, R.G., Sundaresan, S.: Onset of pulsing in two-phase concurrent downflow through a packed-bed. AIChE J. 34, 1850–1860 (1988)

    CAS  Google Scholar 

  • Gunjal, P.R., Kashid, M.N., Ranade, V.V., Chaudhari, R.V.: Hydrodynamics of trickle-bed reactors: experiments and CFD modeling. Ind. Eng. Chem. Res. 44(16), 6278–6294 (2005)

    CAS  Google Scholar 

  • Gunjal, P.R., Ranade, V.V.: Modeling of laboratory and commercial scale hydro-processing reactors using CFD. Chem. Eng. Sci. 62, 5512–5526 (2007)

    CAS  Google Scholar 

  • Gupta, R.: Pulsed flow vapor-liquid reactors. U.S. Patent 4,526,757 (1985)

    Google Scholar 

  • Hamidipour, M., Larachi, F., Ring, Z.: Monitoring filtration in trickle beds using electrical capacitance tomography. Ind. Eng. Chem. Res. 48, 1140–1153 (2009)

    CAS  Google Scholar 

  • Hampel, U., Dittmeyer, R., Patyk, A., Wetzel, T., Lange, R., Freund, H., Schwieger, W., Grünewald, M., Schlüter, M., Petasch, U.: The Helmholtz Energy Alliance „Energy efficient multiphase chemical processes“. Chem. Ing. Tech. 85, 992–996 (2013)

    CAS  Google Scholar 

  • Hanika, J., Kucharova, M., Kolena, J., Smejkal, Q.: Multi-functional trickle bed reactor for butylacetate synthesis. Catal. Today 79, 83–87 (2002)

    Google Scholar 

  • Härting, H.-U., Berger, R., Lange, R., Larachi, F., Schubert, M.: Liquid backmixing in an inclined rotating tubular fixed bed reactor – augmenting liquid residence time via flow regime adjustment. Chem. Eng. Process. 94, 2–10 (2015c)

    Google Scholar 

  • Härting, H.-U., Bieberle, A., Lange, R., Larachi, F., Schubert, M.: Hydrodynamics of co-current two-phase flow in an inclined rotating tubular fixed bed reactor – wetting intermittency via periodic catalyst immersion. Chem. Eng. Sci. 128, 147–158 (2015b)

    Google Scholar 

  • Härting, H.-U., Lange, R., Larachi, F., Schubert, M.: A novel inclined rotating tubular fixed bed reactor concept for enhancement of reaction rates and adjustment of flow regimes. Chem. Eng. J. 281, 931–944 (2015a)

    Google Scholar 

  • Hashimoto, K., Muroyama, K., Fujiyoshi, K., Nagata, S.: Effective radial thermal conductivity in concurrent flow of a gas and liquid through a packed bed. Int. Chem. Eng. 16, 720–727 (1976)

    Google Scholar 

  • Haure, P., Silveston, P.L., Hudgins, R.R., Bellut, M.: Conversion efficiency in trickle bed reactors. U.S. Patent 5,011,675 (1988)

    Google Scholar 

  • Hochman, J.M., Efron, E.: Two-phase cocurrent downflow in packed beds. Ind. Eng. Chem. Fundam. 8, 63–71 (1969)

    CAS  Google Scholar 

  • Hofmann, H.: Hydrodynamics, transport phenomena, and mathematical models in trickle-bed reactors. Int. Chem. Eng. 17, 19–28 (1977)

    Google Scholar 

  • Holub, R.A., Dudukovic, M.P., Ramachandran, P.A.: A phenomenological model of pressure drop, liquid hold-up and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci. 47, 2343–2348 (1992)

    CAS  Google Scholar 

  • Honda, G.S., Lehmann, E., Hickman, D.A., Varma, A.: Effects of prewetting on bubbly- and pulsing-flow regime transitions in trickle-bed reactors. Ind. Eng. Chem. Res. 54, 10.253–10.259 (2015)

    Google Scholar 

  • Houwelingen, A.J. van, Nicol, W.: Parallel hydrogenation for the quantification of wetting efficiency and liquid-solid mass transfer in a trickle-bed reactor. AIChE J. 57, 1310–1319 (2011)

    Google Scholar 

  • Houwelingen, A. J. van, Sandrock, C., Nicol, W.: Particle wetting distribution in trickle-bed reactors. AIChE J. 52, 3532–3542 (2006)

    CAS  Google Scholar 

  • Huang, T.-C., Kang, B.-C.: Kinetic study of naphthalene hydrogenation over Pt/Al2O3 catalyst. Ind. Eng. Chem. Res. 34, 1140–1148 (1995)

    CAS  Google Scholar 

  • Huang, X., Varma, A., McCready, M.J.: Heat transfer characterization of gas-liquid flows in a trickle-bed. Chem. Eng. Sci. 59, 3767–3776 (2004)

    CAS  Google Scholar 

  • Iliuta, I., Aydin, B., Larachi, F.: Onset of pulsing in trickle beds with non-Newtonian liquids at elevated temperature and pressure – modeling and experimental verification. Chem. Eng. Sci. 61, 526–537 (2006)

    CAS  Google Scholar 

  • Iliuta, I., Bozga, G., Lupascu, M.: Liquid-phase alkylation of benzene with propylene catalysed by HY zeolites. Chem. Eng. Technol. 24, 933–944 (2001)

    CAS  Google Scholar 

  • Iliuta, I., Larachi, F., Al-Dahhan, M.H.: Double-slit model for partially wetted trickle flow hydrodynamics. AIChE J. 46, 597–609 (2000)

    CAS  Google Scholar 

  • Janecki, D., Burghardt, A., Bartelmus, G.: Computational simulation of the hydrodynamic parameters of a trickle-bed reactor operating at periodically changing feeding the bed with liquid. Chem. Process. Eng. 29, 583–596 (2008)

    Google Scholar 

  • Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD modeling of multiphase flow distribution in catalytic packed bed reactors: scale down issues. Catal. Today 66, 209–218 (2001)

    CAS  Google Scholar 

  • Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE J. 48, 701–715 (2002a)

    CAS  Google Scholar 

  • Jiang, Y., Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: CFD of multiphase flow in packed-bed reactors: II. Results and application. AIChE J. 48, 716–730 (2002b)

    CAS  Google Scholar 

  • Joubert, R., Nicol, W.: Trickle flow liquid-solid mass transfer and wetting efficiency in small diameter columns. Can. J. Chem. Eng. 91, 441–447 (2013)

    CAS  Google Scholar 

  • Julcour-Lebigue, C., Baussaron, L., Delmas, H., Wilhelm, A.-M.: Theoretical analysis of tracer method for the measurement of wetting efficiency. Chem. Eng. Sci. 62, 5374–5379 (2007)

    CAS  Google Scholar 

  • Kan, K.M., Greenfield, P.F.: Multiple hydrodynamic states in concurrent two-phase downflow through packed-beds. Ind. Eng. Chem. Process Des. Dev. 17(4), 482–485 (1978)

    CAS  Google Scholar 

  • Kan, K.M., Greenfield, P.F.: Pressure-drop and holdup in two-phase concurrent trickle flows through beds of small packings. Ind. Eng. Chem. Process. Des. Dev. 18, 740–746 (1979)

    CAS  Google Scholar 

  • Kang, S.-H., Bae, J.W., Cheon, J.-Y., Lee, Y.-J., Ha, K.-S., Jun, K.-W., Lee, D.-H., Kim, B.-W.: Catalytic performance on iron-based Fischer-Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor. Appl Catal B. 103(1–2), 169–180 (2011)

    CAS  Google Scholar 

  • Kawase, Y., Ulbrecht, J.J.: Motion of and mass-transfer from an assemblage of solid spheres moving in a non-Newtonian fluid at high Reynolds numbers. Chem. Eng. Commun. 8, 233–249 (1981)

    Google Scholar 

  • Keil, F.J.: Process intensification. Rev. Chem. Eng. 34, 135–200 (2018)

    Google Scholar 

  • Khadilkar, M.R., Al-Dahhan, M.H., Dudukovic, M.P.: Parametric study of unsteady-state flow modulation in trickle-bed reactors. Chem. Eng. Sci. 54, 2585–2595 (1999)

    CAS  Google Scholar 

  • Klinken, J. van, van Dongen, R.H.: Catalyst dilution for improved performance of laboratory trickle-flow reactors. Chem. Eng. Sci. 35, 59–66 (1980)

    Google Scholar 

  • Kolb, W.B., Melli, T.R., Desantos, J.M., Scriven, L.E.: Cocurrent downflow in packed-beds – flow regimes and their acoustic signatures. Ind. Eng. Chem. Res. 29, 2380–2389 (1990)

    CAS  Google Scholar 

  • Korsten, H., Hoffmann, U.: Three-phase reactor model for hydrotreating in pilot trickle-bed reactors. AIChE J. 42, 1350–1360 (1996)

    CAS  Google Scholar 

  • Kulkarni, R.R., Wood, J., Winterbottom, J.M., Stitt, E.H.: Effect of fines and porous catalyst on hydrodynamics of trickle bed reactors. Ind. Eng. Chem. Res. 44, 9497–9501 (2005)

    CAS  Google Scholar 

  • Kundu, A., Nigam, K.D.P., Verma, R.P.: Catalyst wetting characteristics in trickle-bed reactors. AIChE J. 49, 2253–2263 (2003)

    CAS  Google Scholar 

  • Kundu, A., Saroha, A.K., Nigam, K.D.P.: Liquid distribution studies in trickle-bed reactors. Chem. Eng. Sci. 56, 5963–5967 (2001)

    CAS  Google Scholar 

  • Kunii, D., Suzuki, M.: Particle-to-fluid heat and mass transfer in packed beds of fine particles. Int. J. Heat Mass Transf. 10, 845–852 (1967)

    CAS  Google Scholar 

  • Kunzle, S., Soler, J.W., Baiker, A.: Continuous enantioselective hydrogenation in fixed-bed reactor: towards process intensification. Catal. Today 79, 503–509 (2003)

    Google Scholar 

  • Lamine, A.S., Gerth, L., LeGall, H., Wild, G.: Heat transfer in a packed bed reactor with cocurrent downflow of a gas and a liquid. Chem. Eng. Sci. 51, 3813–3827 (1996)

    CAS  Google Scholar 

  • Lämmermann, M., Horak, G., Schwieger, W., Freund, H.: Periodic open cellular structures (POCS) for intensification of multiphase reactors: liquid holdup and two-phase pressure drop. Chem. Eng. Process. 126, 178–189 (2018)

    Google Scholar 

  • Lange, R., Hanika, J., Stradiotto, D., Hudgins, R.R., Silveston, P.L.: Investigations of periodically operated trickle-bed reactors. Chem. Eng. Sci. 49, 5615–5621 (1994)

    CAS  Google Scholar 

  • Lange, R., Schubert, M., Dietrich, W., Grünewald, M.: Unsteady-state operation of trickle-bed reactors. Chem. Eng. Sci. 59, 5355–5361 (2004)

    CAS  Google Scholar 

  • Lappalainen, K., Manninen, M., Alopaeus, V.: CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chem. Eng. Sci. 64, 207–218 (2009)

    CAS  Google Scholar 

  • Larachi, F., Belfares, L., Grandjean, B.P.A.: Prediction of liquid-solid wetting efficiency in trickle flow reactors. Int. Commun. Heat Mass Transf. 28, 595–603 (2001)

    CAS  Google Scholar 

  • Larachi, F., Belfares, L., Iliuta, I., Grandjean, B.P.A.: Heat and mass transfer in cocurrent gas-liquid packed beds. Analysis, recommendations, and new correlations. Ind. Eng. Chem. Res. 42, 222–242 (2003)

    CAS  Google Scholar 

  • Larachi, F., Cassanello, M., Laurent, A.: Gas-liquid interfacial mass transfer in trickle-bed reactors at elevated pressures. Ind. Eng. Chem. Res. 37, 718–733 (1998)

    CAS  Google Scholar 

  • Larachi, F., Iliuta, I., Chen, M., Grandjean, B.P.A.: Onset of pulsing in trickle beds: evaluation of current tools and state-of-the-art correlation. Can. J. Chem. Eng. 77, 751–758 (1999)

    CAS  Google Scholar 

  • Larachi, F., Laurent, A., Midoux, N., Wild, G.: Experimental study of a trickle-bed reactor operating at high-pressure – two-phase pressure drop and liquid saturation. Chem. Eng. Sci. 46, 1233–1246 (1991)

    CAS  Google Scholar 

  • Larachi, F., Laurent, A., Wild, G., Midoux, N.: Effect of pressure on trickle-to-pulse transition in catalytic trickle-bed reactors. Can. J. Chem. Eng. 71, 319–321 (1993)

    CAS  Google Scholar 

  • Latifi, M.A., Rode, S., Midoux, N., Storck, A.: The use of microelectrodes for the determination of flow regimes in a trickle-bed reactor. Chem. Eng. Sci. 47, 1955–1961 (1992)

    CAS  Google Scholar 

  • Lazzaroni, C.L., Keselman, H.R., Figoli, N.S.: Trickle bed reactors – multiplicity of hydrodynamic states – relation between the pressure-drop and the liquid holdup. Ind. Eng. Chem. Res. 28, 119–121 (1989)

    CAS  Google Scholar 

  • Leung, P.C., Recasens, F., Smith, J.M.: Hydration of isobutene in a trickle-bed reactor – wetting efficiency and mass-transfer. AIChE J. 33, 996–1007 (1987)

    CAS  Google Scholar 

  • Levec, J., Smith, J.M.: Oxidation of acetic-acid solutions in a trickle-bed reactor. AIChE J. 22, 159–168 (1976)

    CAS  Google Scholar 

  • Li, Y.X., Cheng, Z.M., Liu, L.H., Yuan, W.K.: Catalytic oxidation of dilute SO2 over activated carbon coupled with partial liquid phase vaporization. Chem. Eng. Sci. 54, 1571–1576 (1999)

    CAS  Google Scholar 

  • Liu, G., Mi, Z., Wang, L., Zhang, X., Zhang, S.: Hydrogenation of dicyclopentadiene into endo-tetrahydrodicyclopentadiene in trickle-bed reactor: experiments and modeling. Ind. Eng. Chem. Res. 45, 8807–8814 (2006)

    CAS  Google Scholar 

  • Liu, G.Z., Duan, Y., Wang, Y.Q., Wang, L., Mi, Z.T.: Periodically operated trickle-bed reactor for EAQs hydrogenation: experiments and modeling. Chem. Eng. Sci. 60, 6270–6278 (2005)

    CAS  Google Scholar 

  • Liu, G.Z., Lan, J.A., Cao, Y.B., Huang, Z.B., Cheng, Z.M., Mi, Z.T.: New insights into transient behaviors of local liquid-holdup in periodically operated trickle-bed reactors using electrical capacitance tomography (ECT). Chem. Eng. Sci. 64, 3329–3343 (2009)

    CAS  Google Scholar 

  • Llano, J.J., Rosal, R., Sastre, H., Diez, F.V.: Determination of wetting efficiency in trickle-bed reactors by a reaction method. Ind. Eng. Chem. Res. 36, 2616–2625 (1997)

    CAS  Google Scholar 

  • Lopes, R.J.G., Quinta-Ferreira, R.M.: Trickle-bed CFD studies in the catalytic wet oxidation of phenolic acids. Chem. Eng. Sci. 62, 7045–7052 (2007)

    CAS  Google Scholar 

  • Lopes, R.J.G., Quinta-Ferreira, R.M.: Volume-of-Fluid-based model for multiphase flow in high-pressure trickle-bed reactor: optimization of numerical parameters. AIChE J. 55, 2920–2933 (2009a)

    CAS  Google Scholar 

  • Lopes, R.J.G., Quinta-Ferreira, R.M.: CFD modelling of multiphase flow distribution in trickle beds. Chem. Eng. J. 147, 342–355 (2009b)

    CAS  Google Scholar 

  • Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD-VOF method for trickle-bed reactor modeling in the catalytic wet oxidation of phenolic wastewaters. Ind. Eng. Chem. Res. 49, 2638–2648 (2010a)

    CAS  Google Scholar 

  • Lopes, R.J.G., Quinta-Ferreira, R.M.: Hydrodynamic simulation of pulsing-flow regime in high-pressure trickle-bed reactors. Ind. End. Chem. Res. 49, 1105–1112 (2010b)

    CAS  Google Scholar 

  • Lopes, R.J.G., Quinta-Ferreira, R.M.: Assessment of CFD Euler-Euler method for trickle-bed reactor modelling in the catalytic wet oxidation of phenolic wastewaters. Chem. Eng. J. 160, 293–301 (2010c)

    CAS  Google Scholar 

  • Maiti, R.N., Nigam, K.D.P.: Gas-liquid distributors for trickle-bed reactors: a review. Ind. Eng. Chem. Res. 46, 6164–6182 (2007)

    CAS  Google Scholar 

  • Marcandelli, C., Wild, G., Lamine, A.S., Bernard, J.R.: Measurement of local particle–fluid heat transfer coefficient in trickle-bed reactors. Chem. Eng. Sci. 54, 4997–5002 (1999)

    CAS  Google Scholar 

  • Mariani, N.J., Martinez, O.M., Barreto, G.F.: Evaluation of heat transfer parameters in packed beds with cocurrent downflow of liquid and gas. Chem. Eng. Sci. 56, 5995–6001 (2001)

    CAS  Google Scholar 

  • Martin, H.: Low Péclet number particle-to-fluid heat and mass transfer in packed beds. Chem. Eng. Sci. 33, 913–919 (1978)

    CAS  Google Scholar 

  • Mary, G., Chaouki, J., Luck, F.: Trickle-bed laboratory reactors for kinetic studies. Int. J. Chem. React. Eng. 7, 1542–1580 (2009)

    Google Scholar 

  • Matsuura, A., Hitaka, Y., Akehata, T., Shirai, T.: Apparent wall heat transfer coefficient in packed beds with downward cocurrent gas-liquid flow. Heat Transfer Jpn. Res. 8, 53–60 (1979)

    CAS  Google Scholar 

  • Maugans, C.B., Akgerman, A.: Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst. Water Res. 37, 319–328 (2002)

    Google Scholar 

  • Mears, D.E.: The role of axial dispersion in trickle-flow laboratory reactors. Chem. Eng. Sci. 26, 1361–1366 (1971a)

    CAS  Google Scholar 

  • Mears, D.E.: Diagnostic criteria for heat transport limitations in fixed bed reactors. J. Catal. 20, 127–131 (1971b)

    CAS  Google Scholar 

  • Mears, D.E.: Role of liquid holdup and effective wetting in performance of trickle-bed reactors. Adv. Chem. Ser. 133, 218–227 (1974)

    CAS  Google Scholar 

  • Mears, D.E.: On criteria for axial dispersion in nonisothermal packed-bed catalytic reactors. Ind. Eng. Chem. Fundam. 15, 20–23 (1976)

    CAS  Google Scholar 

  • Mederos, F.S., Elizalde, I., Ancheyta, J.: Steady-state and dynamic reactor models for hydrotreatment of oil fractions: a review. Catal. Rev. Sci. Eng. 51, 485–607 (2009)

    CAS  Google Scholar 

  • Merchan, A., Emig, G., Hofmann, H., Chaudhari, R.V.: Zur Frage des Katalysator-Wirkungsgrades bei Folge-Reaktionen in Mehrphasensystemen. Chem. Ing. Tech. 58, 50–53 (1986)

    CAS  Google Scholar 

  • Merwe, W. van der, Nicol, W.: Characterization of multiple flow morphologies within the trickle flow regime. Ind. Eng. Chem. Res. 44, 9446–9450 (2005)

    CAS  Google Scholar 

  • Merwe, W. van der, Nicol, W.: Trickle flow hydrodynamic multiplicity: experimental observations and pore-scale capillary mechanism. Chem. Eng. Sci. 64, 1267–1284 (2009)

    Google Scholar 

  • Metaxas, K.C., Papayannakos, N.G.: Kinetics and mass transfer of benzene hydrogenation in a trickle-bed reactor. Ind. Eng. Chem. Res. 45, 7110–7119 (2006)

    CAS  Google Scholar 

  • Meyers, R.A.: Handbook of Petroleum Refining Processes, 3. Aufl. McGraw-Hill Education, New York (2003)

    Google Scholar 

  • Michell, R.W., Furzer, I.A.: Trickle flow in packed-beds. Trans. Inst. Chem. Eng. 50, 334–342 (1972)

    Google Scholar 

  • Mogalicherla, A.K., Sharma, G., Kunzru, D.: Estimation of wetting efficiency in trickle-bed reactors for nonlinear kinetics. Ind. Eng. Chem. Res. 48, 1443–1450 (2009)

    CAS  Google Scholar 

  • Morsi, B.I., Laurent, A., Midoux, N., Barthole-Delaunay, G., Storck, A., Charpentier, J.C.: Hydrodynamics and gas-liquid-solid interfacial parameters of co-current downward two-phase flow in trickle-bed reactors. Chem. Eng. Commun. 25, 267–293 (1984)

    CAS  Google Scholar 

  • Mülheims, P., Kraushaar-Czarnetzki, B.: Temperature profiles and process performances of sponge packings as compared to spherical catalysts in the oxidation of o-xylene to phthalic anhydride. Ind. Eng. Chem. Res. 50, 9925–9935 (2011)

    Google Scholar 

  • Muroyama, K., Hashimoto, K., Tomita, T.: Heat transfer from wall in gas-liquid cocurrent packed beds. Kagaku Kokaku Ronbun. 3, 612–616 (1977)

    CAS  Google Scholar 

  • Nakayama, A., Kuwahara, F.: A general macroscopic turbulence model for flows in packed beds, channels, pipes and rod bundles. J. Fluids Eng. 130, 1–7 (2008)

    Google Scholar 

  • Nelson, P.A., Galloway, T.R.: Particle-to-fluid heat and mass transfer in dense systems of fine particles. Chem. Eng. Sci. 30, 1–6 (1975)

    CAS  Google Scholar 

  • Ng, K.M.: A model for flow regime transitions in cocurrent downflow trickle-bed reactors. AIChE J. 32, 115–122 (1986)

    CAS  Google Scholar 

  • Nicol, W., Joubert, R.: Liquid-solid mass transfer distributions in trickle bed reactors. Chem. Eng. J. 230, 361–366 (2013)

    CAS  Google Scholar 

  • Nigam, K.D.P., Larachi, F.: Process intensification in trickle-bed reactors. Chem. Eng. Sci. 60, 5880–5894 (2005)

    CAS  Google Scholar 

  • Nishizawa, A., Kitano, T., Ikenaga, N., Miyake, T., Suzuki, T.: Use of trickle bed reactor for Fischer-Tropsch reaction over Co-Mn/oxidized diamond catalyst. J. Jpn. Petrol. Inst. 57, 109–117 (2014)

    CAS  Google Scholar 

  • Perego, C., Peratello, S.: Experimental methods in catalytic kinetics. Catal. Today 52, 133–145 (1999)

    CAS  Google Scholar 

  • Pintar, A., Batista, J.: Catalytic hydrogenation of aqueous nitrate solutions in fixed-bed reactors. Catal. Today 53, 35–50 (1999)

    CAS  Google Scholar 

  • Pintar, A., Batista, J., Tisler, T.: Catalytic wet-air oxidation of aqueous solutions of formic acid, acetic acid and phenol in a continuous-flow trickle-bed reactor over Ru/TiO2 catalysts. Appl Catal B. 84, 30–41 (2008)

    CAS  Google Scholar 

  • Pironti, F., Mizrahi, D., Acosta, A., Gonzalez-Mendizabal, D.: Liquid-solid wetting factor in trickle-bed reactors: its determination by a physical method. Chem. Eng. Sci. 54, 3793–3800 (1999)

    CAS  Google Scholar 

  • Rajashekharam, M.V., Jaganathan, R., Chaudhari, R.V.: A trickle-bed reactor model for hydrogenation of 2,4 dinitrotoluene: experimental verification. Chem. Eng. Sci. 53, 787–805 (1998)

    CAS  Google Scholar 

  • Ramachandran, P.A., Dudukovic, M.P., Mills, P.L.: A new model for assessment of external liquid-solid contacting in trickle-bed reactors from tracer response measurements. Chem. Eng. Sci. 41, 855–860 (1986)

    CAS  Google Scholar 

  • Ramachandran, P.A., Smith, J.M.: Effectiveness factors in trickle-bed reactors. AIChE J. 25, 538–542 (1979)

    CAS  Google Scholar 

  • Ramirez, L.F., Escobar, J., Galvan, E., Vaca, H., Murrieta, F.R., Luna, M.R.S.: Evaluation of diluted and undiluted trickle-bed hydrotreating reactor with different catalyst volume. Pet. Sci. Technol. 22, 157–175 (2004)

    CAS  Google Scholar 

  • Ranade, V.V., Chaudhari, R.V., Gunjal, R.R.: Trickle bed reactors. Reactor Engineering and Applications, 1. Aufl. Elsevier, Amsterdam (2011)

    Google Scholar 

  • Ring, Z.E., Missen, R.W.: Trickle-bed reactors – tracer study of liquid holdup and wetting efficiency at high temperature and pressure. Can. J. Chem. Eng. 69, 1016–1020 (1991)

    CAS  Google Scholar 

  • Saez, A.E., Carbonell, R.G.: Hydrodynamic parameters for gas-liquid cocurrent flow in packed-beds. AIChE J. 31, 52–62 (1985)

    CAS  Google Scholar 

  • Saroha, A.K., Nigam, K.D.P.: Trickle bed reactors. Rev. Chem. Eng. 12, 207–347 (1996)

    CAS  Google Scholar 

  • Sato, Y., Hirose, T., Takahasi, F., Toda, M., Hashiguchi, Y.: Flow pattern and pulsation properties of cuocurrent gas-liquid downflow in packed beds. J. Chem. Eng. Jpn. 6, 315–319 (1973)

    CAS  Google Scholar 

  • Satterfield, C.N.: Trickle-bed reactors. AIChE J. 21, 209–228 (1975)

    CAS  Google Scholar 

  • Satterfield, C.N., Pelossof, A.A., Sherwood, T.K.: Mass transfer limitations in a trickle-bed reactor. AIChE J. 15, 226–234 (1969)

    CAS  Google Scholar 

  • Satterfield, C.N., Way, P.F.: Role of liquid-phase in performance of a trickle bed reactor. AIChE J. 18, 305–311 (1972)

    CAS  Google Scholar 

  • Schubert, M.: Festbettreaktor. DE 10 2018 110 091.4 (2018)

    Google Scholar 

  • Schubert, M., Bauer, T., Lange, R.: Instationäre Betriebsweise zur Leistungssteigerung technischer Rieselbettreaktoren. Chem. Ing. Technik. 78, 1023–1032 (2006)

    CAS  Google Scholar 

  • Schubert, M., Hamidipour, M., Duchesne, C., Larachi, F.: Hydrodynamics of cocurrent two-phase flows in slanted porous media – modulation of pulse flow via bed obliquity. AIChE J. 56, 3189–3205 (2010a)

    CAS  Google Scholar 

  • Schubert, M., Hessel, G., Zippe, C., Lange, R., Hampel, U.: Liquid flow texture analysis in trickle bed reactors using high-resolution gamma ray tomography. Chem. Eng. J. 140, 332–340 (2008)

    CAS  Google Scholar 

  • Schubert, M., Kryk, H., Hampel, U.: Slow-mode gas/liquid-induced periodic hydrodynamics in trickling packed beds derived from direct measurement of cross-sectional distributed local capacitances. Chem. Eng. Process. 49, 1107–1121 (2010b)

    CAS  Google Scholar 

  • Sederman, A.J., Gladden, L.F.: Magnetic resonance imaging as a quantitative probe of gas-liquid distribution and wetting efficiency in trickle-bed reactors. Chem. Eng. Sci. 56, 2615–2628 (2001)

    CAS  Google Scholar 

  • Shah, Y.T., Paraskos, J.A.: Criteria for axial dispersion effects in adiabatic trickle bed hydroprocessing reactors. Chem. Eng. Sci. 30, 1169–1176 (1976)

    Google Scholar 

  • Sicardi, S., Hofmann, H.: Influence of gas velocity and packing geometry on pulsing inception in trickle-bed reactors. Chem. Eng. J. 20, 251–253 (1980)

    CAS  Google Scholar 

  • Sie, S.T.: Scale effects in laboratory and pilot-plant reactors for trickle-flow processes. Rev. Inst. Fr. du Pet. 46, 501–515 (1991)

    CAS  Google Scholar 

  • Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1988)

    Google Scholar 

  • Sie, S.T., Krishna, R.: Process development and scale up: III. Scale-up and scale-down of trickle bed processes. Rev. Chem. Eng. 14, 203–252 (1998)

    Google Scholar 

  • Silveston, P.L., Hudgins, R.R.: Periodic Operation of Chemical Reactors, 1. Aufl. Elsevier, Butterworth-Heinemann (2013)

    Google Scholar 

  • Singh, B.K., Jain, E., Buwa, V.V.: Feasibility of electrical resistance tomography for measurements of liquid holdup distribution in a trickle bed reactor. Chem. Eng. J. 358, 564–579 (2019)

    CAS  Google Scholar 

  • Sokolov, V. N., Yablokova, M. A., Krylov, V. N.: 1983, Heat transfer to the wall in a gas-liquid reactor with stationary granular bed. J. Appl. Chem. USSR (Zh. Prikl. Khim.) 56, 554–558 (1983)

    Google Scholar 

  • Specchia, V., Baldi, G.: Heat-transfer in trickle-bed reactors. Chem. Eng. Commun. 3, 483–499 (1979)

    CAS  Google Scholar 

  • Specchia, V., Baldi, G., Gianetto, A.: Solid-liquid mass transfer in concurrent two-phase flow through packed-beds. Ind. Eng. Chem. Proc. Des. Dev. 17, 362–367 (1978)

    CAS  Google Scholar 

  • Stanek, V., Hanika, J.: The effect of liquid flow distribution on catalytic hydrogenation of cyclohexene in an adiabatic trickle-bed reactor. Chem. Eng. Sci. 37, 1283–1288 (1982)

    CAS  Google Scholar 

  • Storsaeter, S., Borg, O., Blekkan, E.A., Holmen, A.: Study of the effect of water on Fischer-Tropsch synthesis over supported cobalt catalysts. J. Catal. 231, 405–419 (2005)

    CAS  Google Scholar 

  • Stradiotto, D.A., Hudgins, R.R., Silveston, P.L.: Hydrogenation of crotonaldehyde under periodic flow interruption in a trickle bed. Chem. Eng. Sci. 54, 2561–2568 (1999)

    CAS  Google Scholar 

  • Subramanian, K., Winkler, M., Harting, H.-U., Schubert, M.: Prediction of flow patterns of rotating inclined reactors by using a modified permeability approach. Chem. Eng. Technol. 39, 2077–2086 (2016)

    CAS  Google Scholar 

  • Subramanian, K., Zalucky, J., Schubert, M., Lucas, D., Hampel, U.: An Eulerian-Eulerian computational approach for simulating descending gas-liquid flows in reactors with solid foam internals. Chem. Eng. Technol. 40, 2044–2057 (2017)

    CAS  Google Scholar 

  • Tan, C.S., Smith, J.M.: A dynamics method for liquid-particle mass-transfer in trickle beds. AIChE J. 28, 190–195 (1982)

    CAS  Google Scholar 

  • Teruel, F.E., Rizwan-uddina: A new turbulence model for porous media flows. Part I: constitutive equations and model closure. Int. J. Heat Mass Transf. 52, 4264–4272 (2009)

    CAS  Google Scholar 

  • Tukač, V., Šimíčková, M., Chyba, V., Lederer, J., Kolena, J., Hanika, J., Jiřičný, V., Staněk, V., Stavárek, P.: The behavior of pilot trickle-bed reactor under periodic operation. Chem. Eng. Sci. 62, 4891–4895 (2007)

    Google Scholar 

  • Uraz, C., Atalay, F.S., Atalay, S.: Catalytic hydrogenation of crotonaldehyde in trickle-bed reactor. Chem. Biochem. Eng. Q. 18, 373–383 (2004)

    CAS  Google Scholar 

  • Urrutia, G., Bonelli, P., Cassanello, M.C., Cassanello, A.L., Cukierman, A.L.: On dynamic liquid holdup determination by the drainage method. Chem. Eng. Sci. 51, 3721–3726 (1996)

    CAS  Google Scholar 

  • Urseanu, M.I., Boelhouwer, J.G., Bosman, H.J.M., Schroijen, J.C., Kwant, G.: Estimation of trickle-to-pulse flow regime transition and pressure drop in high-pressure trickle bed reactors with organic liquids. Chem. Eng. J. 111, 5–11 (2005)

    CAS  Google Scholar 

  • Utikar, R.P., Ranade, V.V.: Intensifying multiphase reactions and reactors: strategies and examples. ACS Sustain. Chem. Eng. 5, 3607–3622 (2017)

    CAS  Google Scholar 

  • Wache, W., Datsevich, L.B., Jess, A.: Fischer-tropsch synthesis in a two-phase reactor with presaturation. Oil Gas-Eur. Mag. 33, 35–38 (2007)

    CAS  Google Scholar 

  • Wache, W., Datsevich, L.B., Jess, A., Neumann, G.: Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator. Fuel 85, 1483–1493 (2006)

    CAS  Google Scholar 

  • Wakao, N., Funazkri, T.: Effect of fluid dispersion coefficients on particle-to-fluid mass-transfer coefficients in packed-beds – correlation of Sherwood numbers. Chem. Eng. Sci. 33, 1375–1384 (1978)

    CAS  Google Scholar 

  • Wang, Y., Chen, J., Larachi, F.: Modelling and simulation of trickle-bed reactors using computational fluid dynamics: a state-of-the-art review. Can. J. Chem. Eng. 91, 136–180 (2013)

    CAS  Google Scholar 

  • Wang, Y.F., Mao, Z.S., Chen, J.Y.: The relationship between hysteresis and liquid flow distribution in trickle beds. Chin. J. Chem. Eng. 7, 221–229 (1999)

    CAS  Google Scholar 

  • Weekman, V.W., Myers, J.E.: Heat transfer characteristics of concurrent gas-liquid flow in packed beds. AIChE J. 11, 13–17 (1965)

    CAS  Google Scholar 

  • Westhuizen, I. van der, du Toit, E., Nicol, W.: Trickle flow multiplicity: the influence of the prewetting procedure on flow hysteresis. Chem. Eng. Res. Des. 85, 1604–1610 (2007)

    Google Scholar 

  • Wild, G., Larachi, F., Charpentier, J.-C.: Heat and mass transfer in gas-liquid-solid fixed bed reactors. In: Quintard, M., Todorovic, M. (Hrsg.) Heat and Mass Transfer in Porous Media, S. 615–632. Elsevier, Amsterdam (1992)

    Google Scholar 

  • Wörz, N., Arras, J., Claus, P.: Continuous selective hydrogenation of citral in a trickle-bed reactor using ionic liquid modified catalysts. Appl. Catal., A. 391, 319–324 (2011)

    Google Scholar 

  • Young, L.C., Finlayson, B.A.: Axial dispersion in nonisothermal packed bed chemical reactors. Ind. Eng. Chem. Fundam. 12, 412–422 (1973)

    CAS  Google Scholar 

  • Zalucky, J.: Hydrodynamics and mass transfer performance of solid-foam packed reactors at descending gas-liquid flows. Dissertation. Technische Universität Dresden (2018)

    Google Scholar 

  • Zalucky, J., Wagner, M., Schubert, M., Lange, R., Hampel, U.: Hydrodynamics of descending gas-liquid flows in solid foams: liquid holdup, multiphase pressure drop and radial dispersion. Chem. Eng. Sci. 168, 480–494 (2017)

    CAS  Google Scholar 

  • Zhukova, T.B., Pisarenko, V.N., Kafarov, V.V.: Modeling and design of industrial reactors with a stationary bed of catalyst and two-phase gas-liquid flow – a review. Int. Chem. Eng. 30, 57–102 (1990)

    Google Scholar 

  • Zimmerman, S.P., Chu, C.F., Ng, K.M.: Axial and radial dispersion in trickle-bed reactors with trickling gas-liquid downflow. Chem. Eng. Commun. 50, 213–240 (1987)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schubert, M. (2019). Reaktoren für Dreiphasen-Reaktionen: Rieselbettreaktoren. In: Reschetilowski, W. (eds) Handbuch Chemische Reaktoren. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56444-8_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56444-8_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56444-8

  • Online ISBN: 978-3-662-56444-8

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics