Skip to main content

Multimediales Lernen: Lehren und Lernen mit Texten und Bildern

  • Living reference work entry
  • First Online:
Lernen mit Bildungstechnologien

Part of the book series: Springer Reference Psychologie ((SRP))

  • 6081 Accesses

Zusammenfassung

Das Lernen mit Multimedia (Kombinationen aus Text und Bild) stellt eine Erfolg versprechende Lernmethode dar. Im Beitrag werden zunächst verschiedene Theorien zum Lernen mit Multimedia beschrieben. Diese betonen die Wichtigkeit einer angemessenen kognitiven Verarbeitung multimedialen Lernmaterials. Allerdings haben Lernende oftmals Schwierigkeiten, Multimedia sinnvoll und effektiv für Lernprozesse zu nutzen. Nach einer Beschreibung dieser Schwierigkeiten werden daher im Beitrag unterschiedliche Formen der instruktionalen Unterstützung beim Lernen mit Multimedia vorgestellt. Diese beziehen sich entweder auf eine Optimierung der Gestaltung multimedialen Lernmaterials oder auf lernerzentrierte Maßnahmen, mit denen die Verfügbarkeit und Anwendung von geeigneten Lernstrategien gewährleistet werden kann. Diese können auch sinnvoll durch Lehrkräfte im Unterricht eingesetzt werden. Insgesamt gibt es bislang im Vergleich zu der umfangreichen Forschung zum Lernen mit Multimedia kaum Forschungsarbeiten zum Lehren mit Multimedia oder zu dessen Anwendung in der Praxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.

    Article  Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Hrsg.), The psychology of learning and motivation (2. Aufl., S. 89–195). New York: Academic Press. https://doi.org/10.1016/s0079-7421(08)60422-3.

    Google Scholar 

  • Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl., S. 206–226). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Baddeley, A. D. (1999). Human memory. Boston: Allyn & Bacon.

    Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and pictures: What kind of support for whom? Journal of Educational Psychology, 101, 282–293.

    Article  Google Scholar 

  • Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101, 70–87.

    Article  Google Scholar 

  • Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple representations. Computers in Human Behavior, 22, 27–42.

    Article  Google Scholar 

  • Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of information during learning with dynamic and interactive visualisations. Learning & Instruction, 14, 325–341.

    Article  Google Scholar 

  • Butcher, K. R. (2014). The multimedia principle. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl., S. 174–205). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Canham, M., & Hegarty, M. (2010). The effect of knowledge and display design on comprehension of complex graphics. Learning & Instruction, 20, 155–166.

    Article  Google Scholar 

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.

    Article  Google Scholar 

  • Cierniak, G., Scheiter, K., & Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load? Computers in Human Behavior, 25, 315–324. https://doi.org/10.1016/j.chb.2008.12.020.

    Article  Google Scholar 

  • Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Hrsg.), Knowing, learning, and instruction (S. 453–494). Hillsdale: Erlbaum.

    Google Scholar 

  • Cromley, J. G., Bergey, B. W., Fitzhugh, S. L., Newcombe, N., Wills, T. W., Shipley, T. F., & Tanaka, J. C. (2013a). Effectiveness of student-constructed diagrams and self-explanation instruction. Learning & Instruction, 26, 45–58.

    Article  Google Scholar 

  • Cromley, J. G., Perez, A. C., Fitzhugh, S., Newcombe, N., Wills, T. W., & Tanaka, J. C. (2013b). Improving students’ diagrammatic reasoning: A classroom intervention study. Journal of Experimental Education, 81, 511–537.

    Article  Google Scholar 

  • Eitel, A. (2016). How repeated studying and testing affects multimedia learning: Evidence for adaptation to task demands. Learning and Instruction, 41, 70–84.

    Article  Google Scholar 

  • Eitel, A., Scheiter, K., & Schüler, A. (2013). How inspecting a picture affects processing of text in multimedia learning. Applied Cognitive Psychology, 27, 451–461.

    Article  Google Scholar 

  • Gog, T. van. (2014). The signaling (or cueing) principle in multimedia learning. In R. E. Mayer (Hrsg.). The Cambridge handbook of multimedia learning (2. Aufl., S. 263–278). New York: Cambridge University Press.

    Google Scholar 

  • Gollwitzer, P. M., & Sheeran, P. (2006). Implementation intentions and goal achievement: A meta-analysis of effects and processes. In M. P. Zanna (Hrsg.), Advances in experimental social psychology (Bd. 38, S. 69–119). San Diego: Elsevier Academic Press.

    Google Scholar 

  • Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low- and high-ability children. Contemporary Educational Psychology, 24, 95–123.

    Article  PubMed  Google Scholar 

  • Hegarty, M. (2005). Multimedia learning about physical systems. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (S. 447–465). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32, 717–742.

    Article  Google Scholar 

  • Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 37–53.

    Article  PubMed  Google Scholar 

  • Horz, H., Winter, C., & Fries, S. (2009). Differential benefits of situated instructional prompts. Computers in Human Behavior, 25, 818–828.

    Article  Google Scholar 

  • Jaeger, A. J., & Wiley, J. (2014). Do illustrations help or harm metacomprehension accuracy? Learning & Instruction, 34, 58–73.

    Article  Google Scholar 

  • Jamet, E. (2014). An eye-tracking study of cueing effects in multimedia learning. Computers in Human Behavior, 32, 47–53.

    Article  Google Scholar 

  • Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology. Applied, 18, 178–191.

    Article  PubMed  Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31.

    Article  Google Scholar 

  • Kombartzky, U., Ploetzner, R., Schlag, S., & Metz, B. (2010). Developing and evaluating a strategy for learning from animations. Learning & Instruction, 20, 424–433.

    Article  Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34, 949–968.

    Article  Google Scholar 

  • Kühl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011). Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & Education, 56, 176–187.

    Article  Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  • Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation, and the transient information effect. Applied Cognitive Psychology, 25, 943–951.

    Article  Google Scholar 

  • Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Hrsg.), The psychology of illustration (Bd. 1, S. 51–85). New York: Springer.

    Google Scholar 

  • Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning & Instruction, 13, 177–189.

    Article  Google Scholar 

  • Lin, L., & Atkinson, R. K. (2013). Enhancing learning from different visualizations by self-explanation prompts. Journal of Educational Computer Research, 49, 83–110.

    Article  Google Scholar 

  • Lin, L., Atkinson, R. K., Savenye, W. C., & Nelson, B. C. (2014). Effects of visual cues and self-explanation prompts: Empirical evidence in a multimedia environment. Interactive Learning Environments, 24, 799–813.

    Article  Google Scholar 

  • Low, R., & Sweller, J. (2014). The modality principle in multimedia learning. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl., S. 227–246). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Lowe, R. (2004). Interrogation of a dynamic visualization during learning. Learning & Instruction, 14, 257–274.

    Article  Google Scholar 

  • Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95–109.

    Article  Google Scholar 

  • Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 41, 172–187.

    Article  Google Scholar 

  • Mason, L., Pluchino, P., & Tornatora, M. C. (2016). Using eye-tracking technology as an instruction tool to improve text and picture processing and learning. British Journal of Educational Technology, 47, 1083–1095.

    Article  Google Scholar 

  • Mason, L., Scheiter, K., & Tornatora, M. C. (2017). Using eye movements to model the sequence of text-picture processing for multimedia comprehension. Journal of Computer Assisted Learning, 33, 443–460. https://doi.org/10.1111/jcal.12191.

  • Mayer, R. E. (2001). Multimedia learning. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (2. Aufl.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E. (Hrsg.). (2014). The Cambridge handbook of multimedia learning (2. Aufl.). New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E., Mathias, A., & Wetzel, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology: Applied, 8, 147–154.

    PubMed  Google Scholar 

  • Mayer, R. E., Dow, G. T., & Mayer, S. (2003). Multimedia learning in an interactive self-explaining environment: What works in the design of agent-based microworlds? Journal of Educational Psychology, 95, 806–812.

    Article  Google Scholar 

  • McNamara, D. S., Kintsch, E., Butler Songer, N., & Kintsch, W. (1996). Are good texts always better? Interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction, 14, 1–43.

    Article  Google Scholar 

  • Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91, 358–368.

    Article  Google Scholar 

  • Nitz, S., Ainsworth, S. E., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching predict the development of representational competence and biological knowledge? Learning & Instruction, 31, 13–22.

    Article  Google Scholar 

  • Ohle, A., McElvany, N., Horz, H., & Ullrich, M. (2015). Text-picture integration – Teachers’ attitudes, motivation and self-related cognitions in diagnostics. Journal of Educational Research Online, 7, 11–33.

    Google Scholar 

  • Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. E. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human Behavior, 26, 110–117.

    Article  Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual coding approach. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning & Instruction, 12, 61–86.

    Article  Google Scholar 

  • Reid, D. J., & Beveridge, M. (1986). Effects of text illustration in children’s learning of a school science topic. British Journal of Educational Psychology, 56, 294–303.

    Article  Google Scholar 

  • Renkl, A. (2014). Towards an instructionally-oriented theory of example-based learning. Cognitive Science, 38, 1–37. https://doi.org/10.1111/cogs.12086.

    Article  PubMed  Google Scholar 

  • Renkl, A., & Scheiter, K. (2015). Studying visual displays: How to instructionally support learning. Educational Psychology Review, 1–23. https://doi.org/10.1007/s10648-015-9340-4.

  • Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7, 216–237.

    Article  Google Scholar 

  • Richter, J., Scheiter, K., & Eitel, A. (2016a). Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review, 17, 19–36.

    Article  Google Scholar 

  • Richter, J., Ulrich, N., Scheiter, K., & Schanze, S. (2016b). eChemBook: Gestaltung eines digitalen Schulbuchs. Lehren & Lernen. Zeitschrift für Schule und Innovation aus Baden-Württemberg, 7, 23–29.

    Google Scholar 

  • Rummer, R., Schweppe, J., Scheiter, K., & Gerjets, P. (2008). Lernen mit Multimedia: die kognitiven Grundlagen des Modalitätseffekts. Psychologische Rundschau, 59, 98–107.

    Google Scholar 

  • Rummer, R., Schweppe, J., Fürstenberg, A., Seufert, T., & Brünken, R. (2010). Working memory interference during processing texts and pictures: Implications for the explanation of the modality effect. Applied Cognitive Psychology, 24, 164–176.

    Article  Google Scholar 

  • Rummer, R., Schweppe, J., Fürstenberg, A., Scheiter, K., & Zindler, A. (2011). The perceptual basis of the modality effect in multimedia learning. Journal of Experimental Psychology: Applied, 17, 159–173.

    PubMed  Google Scholar 

  • Salomon, G. (1984). Television is „easy“ and print is „tough“: The differential investment of mental effort in learning as a function of perceptions and attributions. Journal of Educational Psychology, 76, 647–658.

    Article  Google Scholar 

  • Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning & Instruction, 36, 11–26.

    Article  Google Scholar 

  • Scheiter, K., Schüler, A., Gerjets, P., Huk, T., & Hesse, F. W. (2014). Extending multimedia research: How do prerequisite knowledge and reading comprehension affect learning from text and pictures. Computers in Human Behavior, 31, 73–84.

    Article  Google Scholar 

  • Scheiter, K., Schubert, C., Gerjets, P., & Stalbovs, K. (2015). Does a strategy training foster students’ ability to learn from multimedia? Journal of Experimental Education, 83, 266–289.

    Article  Google Scholar 

  • Scheiter, K., Schubert, C., & Schüler, A. (2017). Self-regulated learning from illustrated text: Eye Movement Modeling to support use and regulation of cognitive processes during learning from multimedia. Manuscript submitted for publication.

    Google Scholar 

  • Schlag, S., & Ploetzner, R. (2010). Supporting learning from illustrated texts: conceptualizing and evaluating a learning strategy. Instructional Science, 39, 921–937. https://doi.org/10.1007/s11251-010-9160-3.

    Article  Google Scholar 

  • Schmidt-Weigand, F., & Scheiter, K. (2011). The role of spatial descriptions in learning from multimedia. Computers in Human Behavior, 27, 22–28.

    Article  Google Scholar 

  • Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). Explaining the modality and contiguity effects: New insights from investigating students’ viewing behavior. Applied Cognitive Psychology, 24, 226–237.

    Article  Google Scholar 

  • Schnotz, W. (2014). Integrated model of text and picture comprehension. In R. E. Mayer (Hrsg.), The Cambridge handbook of multimedia learning (2. Aufl., S. 72–103). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156. https://doi.org/10.1016/s0959-4752(02)00017-8.

    Article  Google Scholar 

  • Schnotz, W., Horz, H., McElvany, N., Schroeder, S., Ullrich, M., Baumert, J., Hachfeld, A., & Richter, T. (2010). Das BITE-Projekt: Integrative Verarbeitung von Bildern und Texten in der Sekundarstufe. Projekt BITE. In E. Klieme, D. Leutner & M. Kenk (Hrsg.), Kompetenzmodellierung. Zwischenbilanz des DFG- Schwerpunktprogramms und Perspektiven des Forschungsansatzes (S. 143–153). Weinheim: Beltz.

    Google Scholar 

  • Schnotz, W., Ludewig, U., Ullrich, M., Horz, H., McElvany, N., & Baumert, J. (2014). Strategy shifts during learning from texts and pictures. Journal of Educational Psychology, 106, 974–989. https://doi.org/10.1037/a0037054.

    Article  Google Scholar 

  • Schüler, A., Scheiter, K., & Schmidt-Weigand, F. (2011). Boundary conditions and constraints of the modality effect. German Journal of Educational Psychology, 25, 211–220.

    Google Scholar 

  • Schüler, A., Scheiter, K., & Gerjets, P. (2012). Verbal descriptions of spatial information can interfere with picture processing. Memory, 20, 682–699.

    Article  PubMed  Google Scholar 

  • Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are used and how they can be made more useful. Applied Cognitive Psychology, 23, 1227–1243.

    Article  Google Scholar 

  • Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that diagrams improve learning from text. Memory, 18, 698–711.

    Article  PubMed  Google Scholar 

  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning & Instruction, 13, 227–237.

    Article  Google Scholar 

  • Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training fosters the comprehension of processes and functions in technical systems. Frontiers in Psychology, 6, 598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stalbovs, K. (2016). Supporting cognitive processing in multimedia learning: The use of implementation intentions. Unveröffentlichte Dissertation. Eberhard Karls Universität Tübingen.

    Google Scholar 

  • Stalbovs, K., Scheiter, K., & Gerjets, P. (2015). Implementation intentions during multimedia learning: Using if-then plans to facilitate cognitive processing. Learning & Instruction, 35, 1–15.

    Article  Google Scholar 

  • Stieff, M., Hegarty, M., & Deslongchamps, G. (2011). Identifying representational competence with multi-representational displays. Cognition & Instruction, 29, 123–145.

    Article  Google Scholar 

  • Van Gog, T., & Rummel, N. (2010). Example-based learning: Integrating cognitive and social-cognitive research perspectives. Educational Psychology Review, 22, 155–174.

    Article  Google Scholar 

  • Van Merriënboer, J. J. G., & Sluijsmans, D. M. A. (2009). Toward a synthesis of cognitive load theory, four- component instructional design, and self-directed learning. Educational Psychological Review, 21, 55–66.

    Article  Google Scholar 

  • Veenman, M. J. V., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition & Learning, 1, 3–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Scheiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scheiter, K., Richter, J., Renkl, A. (2018). Multimediales Lernen: Lehren und Lernen mit Texten und Bildern. In: Niegemann, H., Weinberger, A. (eds) Lernen mit Bildungstechnologien. Springer Reference Psychologie . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54373-3_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54373-3_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54373-3

  • Online ISBN: 978-3-662-54373-3

  • eBook Packages: Springer Referenz Psychologie

Publish with us

Policies and ethics