Skip to main content

Application of Analytical Modeling in the Design for Reliability of Electronic Packages and Systems

Definitions

Electronic packaging is a discipline within the field of materials, electrical and mechanical engineering concerned with enclosures and protective features built into the electronic devices. It comprises a wide variety of technologies. It applies both to end products and to components.

Electronic systems design deals with the multidisciplinary design issues of complex electronic devices and systems, such as mobile phones and computers. The subject covers a broad spectrum, from the design and development of an electronic system (new product development) to assuring its proper function, service life, and disposal.

Analytical Classical Mechanics and Applied Physics-Based Modeling, Its Role, and Significance

Mechanical (“physical”) performance of electronic and photonic materials, assemblies, packages, and systems is the bottleneck of the today’s electronic and photonic reliability engineering. Nothing happens to an electron or a photon. But, as we used to say at Bell Labs, “if...

This is a preview of subscription content, access via your institution.

References

  • Bar-Cohen A, Kraus AD (eds) (1988) Advances in thermal modeling of electronic components and systems. Hemisphere, New York

    Google Scholar 

  • Chen L, Adams J, Chu HW, Fan XJ (2016) Modeling of moisture over-saturation and vapor pressure in die attach film for stacked-die chip scale packages. J Mater Sci Mater Electron 27(1):481–488

    CrossRef  Google Scholar 

  • Chen L, Jiang TF, Fan XJ (2017) Die and package level thermal and thermal/moisture stresses in 3-D packaging: modeling and characterization. In: Li Y, Deepak G (eds) 3D microelectronic packaging: from fundamentals to applications. Springer

    Google Scholar 

  • Christiaens W, Vandevelde B, Bosman E, Vanfleteren J (2006) Ultra-thin chip package (UTCP): 60 μm thick bendable chip package. In: 3-rd international conference on wafer level packaging (WLP)

    Google Scholar 

  • Dandu P, Fan XJ, Liu Y, Diao C (2010) Finite element modeling on electro-migration of solder joints in wafer level packages. Microelectron Reliab 50:547–555

    CrossRef  Google Scholar 

  • Deletage JY, Verdier F, Plano B, Deshayes Y, Bechou L, Danto Y (2003) Reliability estimation of BGA & CSP assemblies using degradation law model and technological parameters deviation. Microelectron Reliab 43(7):1137–1144

    CrossRef  Google Scholar 

  • Deshayes Y, Bechou L, Deletage JY, Verdier F, Danto Y, Laffitte D, Goudard JL (2003) Three-dimensional FEM simulations of thermo-mechanical stresses in 1.55 μm Laser modules. Microelectron Reliab 43(7):1125–1136

    CrossRef  Google Scholar 

  • Fan XJ (2014) Thermal stresses in wafer level packaging. In: Hetnarski RB (ed) Encyclopedia of thermal stresses. Springer

    Google Scholar 

  • Fan XJ, Lee SWR (2010) Fundamental characteristics of moisture transport, diffusion, and the moisture induced damages in polymeric materials in electronic packaging, Chapter 1. In: Fan XJ, Suhir E (eds) Moisture sensitivity of plastic packages of IC devices. Springer, New York, pp 1–28

    CrossRef  Google Scholar 

  • Fan XJ, Ranouta AS (2012) Finite element modeling of system design and testing conditions for component solder ball reliability under impact. IEEE CPMT Trans 2(11):1802–1810

    Google Scholar 

  • Fan XJ, Suhir E e (2010) Moisture sensitivity of plastic packages of IC devices. Springer, New York

    CrossRef  Google Scholar 

  • Fan XJ, Tee TY, Shi XQ, Xie B (2010) Modeling of moisture diffusion and whole-field vapor pressure in plastic packages of IC devices, Chapter 4. In: Fan XJ, Suhir E (eds) Moisture sensitivity of plastic packages of IC devices. Springer, New York, pp 91–112

    CrossRef  Google Scholar 

  • Fan XJ, Pei M, Bhatti PK (2014) Thermal stresses in flip chip BGA packaging. In: Hetnarski RB (ed) Encyclopedia of thermal stresses. Springer

    Google Scholar 

  • Fan XJ, Chen L, Wong CP, Chu HS, Zhang GQ (2015a) Effects of vapor pressure and super-hydrophobic nanocomposite coating on microelectronics reliability. Engineering 1(3):384–390

    CrossRef  Google Scholar 

  • Fan JJ, Qian C, Yung KC, Fan XJ, Zhang GQ, Pecht M (2015b) Optimal design of life testing for high brightness white LEDs using the six sigma DMAIC approach. IEEE Trans Device Mater Reliab 15(4):576–587

    CrossRef  Google Scholar 

  • Huang JL, Golubović DS, Koh S, Yang DG, Li XP, Fan XJ, Zhang GQ (2015) Degradation modeling of mid-power white-light LEDs by using Wiener process. Opt Express 23(15):A966–A978

    CrossRef  Google Scholar 

  • Huang JL, Golubović DS, Koh S, Yang DG, Lie XP, Fan XJ, Zhang GQ (2016) Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test. Reliab Eng Syst Saf 154:152–159

    CrossRef  Google Scholar 

  • Luryi S, Suhir E (1986) A new approach to the high-quality epitaxial growth of lattice – mismatched materials. Appl Phys Lett 49(3):140

    CrossRef  Google Scholar 

  • Ou ZC, Yao XH, Zhang XQ, Fan XJ (2014) Wrinkling analysis in a film bonded to a compressible compliant substrate in large deformation. Comput Mater Continua 44(3):205–221

    Google Scholar 

  • Ou ZC, Yao XH, Zhang XQ, Fan XJ (2016a) Dynamic stability of flexible electronic structures under step loads. Eur J Mech A Solids 58:247–255

    MathSciNet  CrossRef  Google Scholar 

  • Ou ZC, Yao XH, Zhang XQ, Fan XJ (2016b) Buckling of a stiff thin film on a compliant substrate under anisotropic biaxial prestrain. Sci China Phys Mech Astron 59:624601

    CrossRef  Google Scholar 

  • Placette MD, Fan XJ, Zhao JH, Edwards D (2012) Dual stage modeling of moisture absorption and desorption in epoxy mold compounds. Microelectron Reliab 52:1401–1408

    CrossRef  Google Scholar 

  • Reinikainen T, Suhir E (2009) Novel shear test methodology for the most accurate assessment of solder material properties. In: IEEE ECTC 2009

    Google Scholar 

  • Shen Y, Zhang L, Zhu WH, Zhou J, Fan XJ (2016) Finite-element analysis and experimental test for a capped-die flip-chip package design. IEEE Trans Compon Packag Manuf Technol 6(9):1308–1316

    CrossRef  Google Scholar 

  • Shi XQ, Fan XJ, Zhang YL, Zhou W (2010) Characterization of interfacial hydrothermal strength of sandwiched assembly using photomechanics measurement techniques. In: Fan XJ, Suhir E (eds) Moisture sensitivity of plastic packages of IC devices

    Google Scholar 

  • Suhir E (1986a) Stresses in bi-metal thermostats. ASME J Appl Mech 53(3):657

    CrossRef  Google Scholar 

  • Suhir E (1986b) Calculated thermally induced stresses in adhesively bonded and soldered assemblies. In: International symposium on microelectronics. ISHM, Atlanta

    Google Scholar 

  • Suhir E (1987) Die attachment design and its influence on the thermally induced stresses in the die and in the attachment. In: 37th ECTC

    Google Scholar 

  • Suhir E (1988a) Thermal stress failures in microelectronic components-review and extension. In: Bar-Cohen A, Kraus AD (eds) Advances in thermal modeling of electronic components and systems. Hemisphere, New York

    MATH  Google Scholar 

  • Suhir E (1988b) An approximate analysis of stresses in multilayer elastic thin films. ASME J Appl Mech 55(3):143

    CrossRef  Google Scholar 

  • Suhir E (1988c) On a paradoxical phenomenon related to beams on elastic foundation. ASME J Appl Mech 55(10):818

    CrossRef  Google Scholar 

  • Suhir E (1989a) Analytical modeling in structural analysis for electronic packaging: its merits, shortcomings and interaction with experimental and numerical techniques. ASME J Electr Pack 111(2)

    Google Scholar 

  • Suhir E (1989b) Interfacial stresses in bi-metal thermostats. ASME J Appl Mech 56(3):595

    CrossRef  Google Scholar 

  • Suhir E (1991) Mechanical behavior of materials in microelectronic and fiber optic systems: application of analytical modeling. MRS Symp Proc:226

    Google Scholar 

  • Suhir E (1997a) The future of microelectronics and photonics, and the role of mechanics and materials. In: EPTC’97, Singapore, Oct 1997

    Google Scholar 

  • Suhir E (1997b) Applied probability for engineers and scientists, vol 119. McGraw Hill, New York, p 213

    Google Scholar 

  • Suhir E (1997c) Dynamic response of microelectronics and photonics systems to shocks and vibrations. In: INTERPack’97, Hawaii, June 15–19

    Google Scholar 

  • Suhir E (1998) Adhesively bonded assemblies with identical non-deformable adherends and inhomogeneous adhesive layer: predicted thermal stresses in the adhesive. J Reinf Plastics Comp 17(14)

    Google Scholar 

  • Suhir E (1999a) Adhesively bonded assemblies with identical non-deformable adherends: predicted thermal stresses in the adhesive layer. Composite Interfaces 6(2)

    Google Scholar 

  • Suhir E (1999b) Thermal stress failures in microelectronics and photonics: prediction and prevention. Futur Circuits Int 5

    Google Scholar 

  • Suhir E (2000a) Microelectronics and photonics – the future. Microelectron J 31(11–12):839

    CrossRef  Google Scholar 

  • Suhir E (2000b) Predicted stresses in, and the bow of, a circular substrate/thin-film system subjected to the change in temperature. J Appl Phys 88(5)

    Google Scholar 

  • Suhir E (2000c) Adhesively bonded assemblies with identical non-deformable adherends and “piecewise continuous” adhesive layer: predicted thermal stresses and displacements in the adhesive. Int J Solids Struct 37:2229

    CrossRef  Google Scholar 

  • Suhir E (2001a) Device and method of controlling the bowing of a soldered or adhesively bonded assembly, US Patent #6,239,382

    Google Scholar 

  • Suhir E (2001b) Thermo-mechanical stress modeling in microelectronics and photonics. Electr Cooling 7(4)

    Google Scholar 

  • Suhir E (2001c) Analysis of interfacial thermal stresses in a tri-material assembly. J Appl Phys 89(7):3685

    CrossRef  Google Scholar 

  • Suhir E (2001d) Thermal stress in a polymer coated optical glass fiber with a low modulus coating at the ends. J Mat Res 16(10):2996

    CrossRef  Google Scholar 

  • Suhir E (2001e) Thermal stress in a bi-material assembly adhesively bonded at the ends. J Appl Phys 89(1)

    Google Scholar 

  • Suhir E (2002a) Bi-material assembly bonded at the ends and fabrication method, US Patent #6,460,753

    Google Scholar 

  • Suhir E (2002b) Analytical stress-strain modeling in photonics engineering: its role, attributes and interaction with the finite-element method. Laser Focus World

    Google Scholar 

  • Suhir E (2003) Thermal stress in an adhesively bonded joint with a low modulus adhesive layer at the ends. J Appl Phys

    Google Scholar 

  • Suhir E (2005) Analytical thermal stress modeling in physical design for reliability of micro- and opto-electronic systems: role, attributes, challenges, results. In: Therminic conference, Lago Maggiore, 27–30 Sept 2005

    Google Scholar 

  • Suhir E (2006) Interfacial thermal stresses in a bi-material assembly with a low-yield-stress bonding layer. Model Simul Mater Sci Eng 14:1421

    CrossRef  Google Scholar 

  • Suhir E (2009a) Analytical thermal stress modeling in electronic and photonic systems. ASME AMR 62(4)

    Google Scholar 

  • Suhir E (2009b) On a paradoxical situation related to bonded joints: could stiffer mid-portions of a compliant attachment result in lower thermal stress? JSME, J Solid Mech Mat Eng (JSMME) 3(7)

    CrossRef  Google Scholar 

  • Suhir E (2009c) Thermal stress in a bi-material assembly with a “piecewise-continuous” bonding layer: theorem of three axial forces. J Appl Physics, D 42:045507

    CrossRef  Google Scholar 

  • Suhir E (2011a) Linear response to shocks and vibrations. In: Suhir E, Steinberg D, Yu T (eds) Structural dynamics of electronic and photonic systems. Wiley, Hoboken

    CrossRef  Google Scholar 

  • Suhir E (2011b) Thermal stress failures: predictive modeling explains the reliability physics behind them. IMAPS Adv Microelectron 38(4)

    Google Scholar 

  • Suhir E (2011c) Predictive modeling of the dynamic response of electronic systems to shocks and vibrations. ASME Appl Mech Rev 63(5)

    CrossRef  Google Scholar 

  • Suhir E (2011d) Predictive modeling is a powerful means to prevent thermal stress failures in electronics and photonics. ChipScale Rev 15(4)

    Google Scholar 

  • Suhir E (2012) Thermal stress in electronics and photonics: prediction and prevention. Therminic, Budapest

    Google Scholar 

  • Suhir E (2013) Structural dynamics of electronics systems. Mod Phys Lett B (MPLB) 27(7)

    MathSciNet  CrossRef  Google Scholar 

  • Suhir E (2015a) Analytical predictive modeling in fiber optics structural analysis: review and extension. In: SPIE, San-Francisco, 10 Feb

    Google Scholar 

  • Suhir E (2015b) Analytical stress modeling for TSVs in 3D packaging. In: Semi-term, San-Jose, 15–19 Mar 2015

    Google Scholar 

  • Suhir E, Bechou L (2013) Saint-Venant’s principle and the minimum length of a dual-coated optical fiber specimen in reliability (proof) testing. In: ESREF conference, Arcachon

    CrossRef  Google Scholar 

  • Suhir E, Nicolics J (2014) Analysis of a bow-free pre-stressed test specimen. ASME J Appl Mech 81(11):114502

    CrossRef  Google Scholar 

  • Suhir E, Reinikainen T (2008) On a paradoxical situation related to lap shear joints: could transverse grooves in the adherends lead to lower interfacial stresses? J Appl Phys D 41:115505

    CrossRef  Google Scholar 

  • Suhir E, Reinikainen T (2009a) Interfacial stresses in a lap shear joint (LSJ): the transverse groove effect (TGE). JSME J Solid Mech Mat Eng (JSMME) 3(6)

    Google Scholar 

  • Suhir E, Reinikainen T (2009b) Nonlinear dynamic response of a “flexible-and-heavy” printed circuit board (PCB) to an impact load applied to its support contour. J Appl Phys D 42(4):045506

    CrossRef  Google Scholar 

  • Suhir E, Reinikainen T (2010) Interfacial stresses in a lap shear joint (LSJ): the transverse groove effect (TGE) and the predicted peeling stress. JSME J Solid Mech Mater Eng (JSMME) 4(8)

    Google Scholar 

  • Suhir E, Shakouri A (2013) Predicted thermal stresses in a multi-leg thermoelectric module (TEM) design. ASME J Appl Mech 80

    CrossRef  Google Scholar 

  • Suhir E, Wong C-P, Lee Y-C (eds) (2008) Micro- and opto-electronic materials and structures: physics, mechanics, design, packaging, reliability, 2 vol. Springer, New York

    Google Scholar 

  • Suhir E, Steinberg D, Yi T (eds) (2011) Structural dynamics of electronic and photonic systems. Wiley, Hoboken

    MATH  Google Scholar 

  • Suhir E, Bechou L, Levrier B (2013) Predicted size of an inelastic zone in a ball-grid-array assembly. ASME J Appl Mech 80:021007

    CrossRef  Google Scholar 

  • Suhir E, Bensoussan A, Nicolics J (2015a) Bow-free pre-stressed ALT specimen. In: SAE conference, Seattle, 22–24 Sept

    Google Scholar 

  • Suhir E, Khatibi G, Nicolics J (2015b) Predictive modeling of the lattice-misfit stresses in GaN film grown on a circular substrate. In: MPPE conference, Leoben, 3–5 Nov

    Google Scholar 

  • Suhir E, Ghaffarian R, Nicolics J (2016a) Could thermal stresses in an inhomogeneous BGA/CGA system be predicted using a model for a homogeneously bonded assembly? JMSE 27(1)

    Google Scholar 

  • Suhir E, Yi S, Khatibi G, Nicolics J, Lederer M (2016b) Semiconductor film grown on a circular substrate: predictive modeling of lattice-misfit stresses. JMSE 27(9)

    Google Scholar 

  • Sun B, Fan XJ, Qian C, Zhang GQ (2016) PoF-simulation-assisted reliability prediction for electrolytic capacitor in LED drivers. IEEE Trans Ind Electron 63(11):6726–6735

    CrossRef  Google Scholar 

  • Sun B, Fan XJ, Ye HY, Fan JJ, Qian C, van Driel WD, Zhang GQ (2017) A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation. Reliab Eng Syst Saf 163:14–21

    CrossRef  Google Scholar 

  • Timoshenko SP (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11:233

    CrossRef  Google Scholar 

  • Zhang GQ, van Driel WD, Fan XJ (2006) Mechanics of microelectronics. Springer

    Google Scholar 

  • Zhou C-Y, Yu T-X, Suhir E (2009) Design of shock table tests to mimic real-life drop conditions. IEEE CPMT Trans 32(4)

    CrossRef  Google Scholar 

  • Zhou J, Tee TY, Fan XJ (2010) Hygroscopic swelling of polymeric materials in electronic packaging: characterization and analysis, Chapter 7. In: Fan XJ, Suhir E (eds) Moisture sensitivity of plastic packages of IC devices. Springer, New York, pp 153–179

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ephraim Suhir .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Suhir, E. (2019). Application of Analytical Modeling in the Design for Reliability of Electronic Packages and Systems. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_370-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_370-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering