Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Computational Models for Hemodynamics

  • Alfio Quarteroni
  • Christian VergaraEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_35-1



Hemodynamics means fluid dynamics of the blood. Here, mathematical foundation and numerical approximation of the cardiocirculatory system, with emphasis on hemodynamics, are addressed.


Cardiovascular diseases represent the major cause of death in Western countries, leading to more than 17.3 million deaths per year worldwide (about half of all deaths in Europe).

The cardiovascular system is composed of the heart, the vascular circulation (both arteries and veins), and the microcirculation (capillaries); see Fig. 1. Here, the mathematical and numerical description of the first two components is considered.
This is a preview of subscription content, log in to check access.


  1. Astorino M, Hamers J, Shadden C, Gerbeau J (2012) A robust and efficient valve model based on resistive immersed surfaces. Int J Numer Methods Biomed Eng 28(9):937–959MathSciNetCrossRefGoogle Scholar
  2. Badia S, Nobile F, Vergara C (2008) Fluid-structure partitioned procedures based on Robin transmission conditions. J Comput Phys 227:7027–7051MathSciNetCrossRefGoogle Scholar
  3. Balzani D, Brands D, Klawonn A, Rheinbach O, Schroder J (2010) On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies. Arch Appl Mech 80(5):479–488CrossRefGoogle Scholar
  4. Barker A, Cai X (2010) Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. J Comput Phys 229:642–659MathSciNetCrossRefGoogle Scholar
  5. Boffi D, Gastaldi L (2003) A finite element approach for the immersed boundary method. Compos Struct 81(8–11):491–501MathSciNetCrossRefGoogle Scholar
  6. Causin P, Gerbeau J, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194(42–44):4506–4527MathSciNetCrossRefGoogle Scholar
  7. Chorin A (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22:745–762MathSciNetCrossRefGoogle Scholar
  8. Colli Franzone P, Pavarino L, Scacchi S (2014) Mathematical cardiac electrophysiology. Springer International Publishing SwitzerlandCrossRefGoogle Scholar
  9. Crosetto P, Deparis S, Fourestey G, Quarteroni A (2011) Parallel algorithms for fluid-structure interaction problems in haemodynamics. SIAM J Sci Comput 33:1598–1622MathSciNetCrossRefGoogle Scholar
  10. Elman H, Silvester D, Wathen A (2005) Finite elements and fast iterative solvers. Oxford Science PublicationsGoogle Scholar
  11. Fedele M, Faggiano E, Dedè L, Quarteroni A (2016) A patient-specific aortic valve model based on moving resistive immersed implicit surfaces. MOX-Report n. 23-2016, Department of Mathematics, Politecnico di Milano, ItalyGoogle Scholar
  12. Fernández M, Gerbeau J, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Meth Eng 69(4):794–821MathSciNetCrossRefGoogle Scholar
  13. FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1(6):445–466CrossRefGoogle Scholar
  14. Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular mathematics – modeling and simulation of the circulatory system. Springer, MilanzbMATHGoogle Scholar
  15. Fritz T, Wieners C, Seemann G, Steen H, Dossel O (2014) Simulation of the contraction of the ventricles in a human heart model including atria and pericardium. Biomech Model Mechanobiol 13(3):627–641CrossRefGoogle Scholar
  16. Gee M, Kuttler U, Wall W (2011) Truly monolithic algebraic multigrid for fluid-structure interaction. Int J Numer Meth Eng 85(8):987–1016MathSciNetCrossRefGoogle Scholar
  17. Goktepe S, Kuhl E (2010) Electromechanics of the heart: a unified approach to the strongly coupled excitation contraction problem. Comput Mech 45(2):227–243MathSciNetCrossRefGoogle Scholar
  18. Hart JD, Peters G, Schreurs P, Baaijens F (2000) A two-dimensional fluid structure interaction model of the aortic value. J Biomech 33(9):10791088Google Scholar
  19. Heil M (2004) An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput Methods Appl Mech Eng 193:1–23MathSciNetCrossRefGoogle Scholar
  20. Hirt C, Amsden A, Cook J (1974) An arbitrary Lagrangian Eulerian computing method for all flow speeds. J Comput Phys 69:277–324zbMATHGoogle Scholar
  21. Hodgkin A, Hukley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefGoogle Scholar
  22. Holzapfel G, Ogden R (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil Trans R Soc A 367:3445–3475MathSciNetCrossRefGoogle Scholar
  23. Holzapfel G, Ogden R (2010) Constitutive modelling of arteries. Proc R Soc Lond Ser A Math Phys Eng Sci 466(2118):1551–1596.  https://doi.org/10.1098/rspa.2010.0058 MathSciNetCrossRefzbMATHGoogle Scholar
  24. Keener J, Bogar K (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8:234–241CrossRefGoogle Scholar
  25. Korakianitis T, Shi Y (2006) A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med Eng Phys 28(7):613–628CrossRefGoogle Scholar
  26. Nash M, Panfilov A (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog Biophys Mol Biol 85(2–3):501–522CrossRefGoogle Scholar
  27. Niederer S, Smith N (2007) A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys J 92(11):4030–4044CrossRefGoogle Scholar
  28. Niederer S, Smith N (2008) An improved numerical method for strong coupling of excitation and contraction models in the heart. Prog Biophys Mol Biol 96(1–3):90–111CrossRefGoogle Scholar
  29. Niederer S, Hunter P, Smith N (2006) A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys J 90(5):1697–1722CrossRefGoogle Scholar
  30. Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comp 30(2):731–763MathSciNetCrossRefGoogle Scholar
  31. Pavarino L, Scacchi S, Zampini S (2015) Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics. Comput Appl Mech Eng 295:562–580MathSciNetCrossRefGoogle Scholar
  32. Perktold K, Thurner E, Kenner T (1994) Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Med Biol Eng Comput 32(1):19–26CrossRefGoogle Scholar
  33. Peskin C (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271MathSciNetCrossRefGoogle Scholar
  34. Peskin C (2002) The immersed boundary method. Acta Numer 11:479–517MathSciNetCrossRefGoogle Scholar
  35. Qu Z, Garfinkel A (1998) An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng 46(9):1166–1168Google Scholar
  36. Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford science publications, OxfordGoogle Scholar
  37. Quarteroni A, Veneziani A, Vergara C (2016) Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput Methods Appl Mech Eng 302:193–252MathSciNetCrossRefGoogle Scholar
  38. Quarteroni A, Lassila T, Rossi S, Ruiz-Baier R (2017a) Integrated heart – coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput Methods Appl Mech Eng 314:345–407MathSciNetCrossRefGoogle Scholar
  39. Quarteroni A, Manzoni A, Vergara C (2017b) The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer 26:365–590MathSciNetCrossRefGoogle Scholar
  40. Robertson A, Sequeira A, Owens R (2009) Chapter 6. Rheological models for blood. In: Formaggia L, Quarteroni A, Veneziani A (eds) Cardiovascular mathematics. Spronger-Verlag Italia, Milano, pp 211–241CrossRefGoogle Scholar
  41. Smith NP, Nickerson DP, Crampin EJ, Hunter PJ (2004) Multiscale computational modelling of the heart. Acta Numer 13:371–431MathSciNetCrossRefGoogle Scholar
  42. Taylor C, Figueroa C (2009) Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng 11:109–134CrossRefGoogle Scholar
  43. Temam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaires (I). Arch Ration Mech Anal 32:135–153CrossRefGoogle Scholar
  44. Vergara C, Lange M, Palamara S, Lassila T, Frangi A, Quarteroni A (2016) A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed Purkinje network. J Comput Phys 308:218–238MathSciNetCrossRefGoogle Scholar
  45. Vigmond E, Clements C (2007) Construction of a computer model to investigate sawtooth effects in the Purkinje system. IEEE Trans Biomed Eng 54(3):389–399CrossRefGoogle Scholar
  46. Yu Y, Baek H, Karniadakis G (2013) Generalized fictitious methods for fluid structure interactions: analysis and simulations. J Comput Phys 245:317–346MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanItaly

Section editors and affiliations

  • Daniel Balzani
    • 1
  1. 1.Chair of Continuum MechanicsRuhr-University-BochumBochumGermany