Skip to main content

A Modeling Framework for Computational Physiology

  • 130 Accesses


Physics based – the use of physical principles such as the laws of conservation of mass and conservation of energy.

Computational physiology – the use of computer models containing equations that represent physiological processes and the solution of these equations with numerical methods designed for digital computers (such as the finite element methods discussed in this entry).

Multiscale modeling – the use of mathematical models that incorporate physical processes operating at more than one spatial scale (e.g., at the level of cells as well as a whole organ).

Standards-based computational frameworks – this refers to the use of community-agreed standards for the encoding of models to help ensure that they are reproducible and reusable.


Anatomy and physiology are the disciplines that underpin the practice of medicine. Discoveries from molecular biology, including the sequencing of the human genome in 2000 (, are...

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  • Breedveld PC (1984) Physical systems theory in terms of bond graphs. PhD thesis University of Twente

    Google Scholar 

  • Chen Z, Niederer SA, Shanmugam N, Sermesant M, Rinaldi CA (2017) Cardiac computational modeling of ventricular tachycardia and cardiac resynchronization therapy: a clinical perspective. Minerva Cardioangiol 65(4):380–397

    Google Scholar 

  • Du P, Paskaranandavadivel N, Angeli TR, Cheng LK, O’Grady G (2016) The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. Wiley Interdiscip Rev Syst Biol Med 8(1):69–85

    CrossRef  Google Scholar 

  • Du P, O’Grady G, Cheng LK (2017) A theoretical analysis of anatomical and functional intestinal slow wave re-entry. J Theor Biol 21(425):72–79

    CrossRef  Google Scholar 

  • Fernandez JW, Pandy MG (2006) Integrating modelling and experiments to assess dynamic musculoskeletal function in humans. Exp Physiol 91(2):371–382

    CrossRef  Google Scholar 

  • Fernandez JW, Mithraratne P, Thrupp SF, Tawhai MH, Hunter PJ (2004) Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol 2(3):139–155

    CrossRef  Google Scholar 

  • Gawthrop PJ, Crampin EJ (2014) Energy based analysis of biochemical cycles using bond graphs. Proc R Soc A 470(2171):20140459.

    CrossRef  Google Scholar 

  • Gawthrop PJ, Crampin EJ (2016) Modular bond-graph modelling and analysis of biomolecular systems. IET Syst Biol.

    CrossRef  Google Scholar 

  • Gawthrop PJ, Cursons J, Crampin EJ (2015) Hierarchical bond graph modelling of biochemical networks. Proc R Soc A 471(2184):20150642.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Hooks DA, Tomlinson KA, Marsden SG, Le Grice IJ, Smaill BH, Pullan AJ, Hunter PJ (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res 91(4):331–338

    CrossRef  Google Scholar 

  • Hunter PJ, Borg TK (2003) Integration from proteins to organs: the Physiome project. Nat Rev Mol Cell Biol 4(3):237–243

    CrossRef  Google Scholar 

  • Hunter PJ, Smaill BH (1989) The analysis of cardiac function: a continuum approach. Prog Biophys Mol Biol 52:101–164

    CrossRef  Google Scholar 

  • Hunter PJ, Pullan AJ, Smaill BH (2003) Modeling total heart function. Annu Rev Biomed Eng 5:147–177

    CrossRef  Google Scholar 

  • Karnopp DC, Margolis DL, Rosenberg RC (2012) System dynamics, 5th edn. Wiley

    Google Scholar 

  • Lee J, Cookson A, Roy I, Kerfoot E, Asner L, Vigueras G, Sochi T, Michler C, Smith N, Nordsletten D (2016) CHeart: Multiphysics computational modelling in CHeart. SIAM J Sci Comput 38:C150–C178

    CrossRef  Google Scholar 

  • LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Phys 269:H571–H582

    Google Scholar 

  • LeGrice IJ, Hunter PJ, Smaill BH (1997) Laminar structure of the heart: a mathematical model. Am J Phys 272:H2466–H2476

    Google Scholar 

  • Lin CL, Tawhai MH, Hoffman EA (2013) Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. WIREs Syst Biol Med 5(5):643–655

    CrossRef  Google Scholar 

  • Nash MP, Hunter PJ (2001) Computational mechanics of the heart. J Elast 61(1–3):113–141

    MATH  Google Scholar 

  • Neic A, Campos FO, Prassl AJ, Niederer SA, Bishop MJ, Vigmond EJ, Plank G (2017) Efficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model. J Comp Phy 346:191–211

    MathSciNet  CrossRef  Google Scholar 

  • Nickerson DP, Hunter PJ (2006) The Noble cardiac ventricular electrophysiology models in CellML. Prog Biophys Molec Biol 90:346–359

    CrossRef  Google Scholar 

  • Nielsen PMF, Hunter PJ, Smaill BH (1991) Biaxial testing of membrane biomaterials: testing equipment and procedures. ASME J Biomech Eng 113(3):295–300

    CrossRef  Google Scholar 

  • Oster G, Perelson A, Katchalsky A (1971) Network thermodynamics. Nature (Lond) 234:393

    CrossRef  Google Scholar 

  • Paynter H (1961) Analysis and Design of Engineering Systems. MIT, Cambridge

    Google Scholar 

  • Tawhai MH, Bates JH (2011) Multi-scale lung modeling. J Appl Physiol 110(5):1466–1472

    CrossRef  Google Scholar 

  • Wang VY, Hussan JR, Yousefi H, Bradley CP, Hunter PJ, Nash MP (2017) Modelling cardiac tissue growth and remodelling. J Elast 129(1–2):283–305

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Hunter .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Hunter, P. (2020). A Modeling Framework for Computational Physiology. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Chapter History

  1. Latest

    A Modeling Framework for Computational Physiology
    11 October 2019


  2. Original

    A Modeling Framework for Computational Physiology
    29 September 2018