Encyclopedia of Continuum Mechanics

Living Edition
| Editors: Holm Altenbach, Andreas Öchsner

Aero, Eron Lyuttovich

Living reference work entry
DOI: https://doi.org/10.1007/978-3-662-53605-6_27-1
Aero, Eron Lyuttovich (*May 14, 1934, village Naryshkino (Penza district), Russia, † July, 11, 2016, St. Petersburg, Russia) the scientist who made an outstanding contribution to the development of the mechanics of generalized continua such as Cosserat continuum and liquid crystals (Fig.1).


Cosserat Continuum Kuvshinskii Viscous Micropolar Fluid Account Rotational Inertia Micropolar Solids 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aero EL, Kuvshinskii EV (1961) Fundamental equations of the theory of elastic media with rotationally interacting particles (english translation from the 1960 Russian edition). Sov Phys Solid State 2(7):1272–1281Google Scholar
  2. Aero EL, Bulygin AN, Kuvshinskii EV (1965) Asymmetric hydromechanics. J Appl Math Mech 29(2):333–346. Cited By (since 1996)36Google Scholar
  3. de Gennes PG, Prost J (1993) The physics of liquid crystals. Clarendon Press, OxfordGoogle Scholar
  4. Eremeyev VA, Porubov AV, Placidi L (2016) Special issue in honor of Eron L Aero. Math Mech Solids 21(1):3–5MathSciNetCrossRefzbMATHGoogle Scholar
  5. Eringen AC (1966a) Linear theory of micropolar elasticity. J Math Mech 15:909–923MathSciNetzbMATHGoogle Scholar
  6. Eringen AC (1966b) Theory of micropolar fluids. J Math Mech 16(1):1–18MathSciNetGoogle Scholar
  7. Eringen AC (1967) Theory of micropolar elasticity. Princeton University, PrincetonCrossRefzbMATHGoogle Scholar
  8. Eringen AC (2001) Microcontinuum field theory. II. Fluent media. Springer, New YorkzbMATHGoogle Scholar
  9. Kuvshinskii RV, Aero EL (1964) Continuum theory of asymmetric elasticity – the problem of internal rotation. Sov Phys Solid State 5(9):1892–1897MathSciNetGoogle Scholar
  10. Łukaszewicz G (1999) Micropolar fluids: theory and applications. Birkhäuser, BostonCrossRefzbMATHGoogle Scholar
  11. Maugin GA (2013) Continuum mechanics through the twentieth century. A concise historical perspective. Springer, DordrechtCrossRefzbMATHGoogle Scholar
  12. Maugin GA, Metrikine AV (eds) (2010) Mechanics of generalized continua: one hundred years after the cosserats. Springer, New YorkzbMATHGoogle Scholar
  13. Stojanović R (1969a) Mechanics of polar continua: theory and applications. CISM courses and lectures, vol 2. Springer, WienGoogle Scholar
  14. Stojanović R (1969b) Recent developments in the theory of polar continua. CISM courses and lectures, vol 27. Springer, WienGoogle Scholar

Authors and Affiliations

  1. 1.Gdańsk University of TechnologyGdańskPoland
  2. 2.Institute for Problems in Mechanical EngineeringSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Section editors and affiliations

  • Holm Altenbach
    • 1
  1. 1.Lehrstuhl für Technische Mechanik, Institut für Mechanik, Fakultät für MaschinenbauOtto-von-Guericke-UniversitätMagdeburgGermany