Skip to main content

Analysis of Cracks in Piezoelectric Solids with Consideration of Electric Field and Strain Gradients

  • 243 Accesses

Synonyms

Crack analysis; Electric field and strain gradient; FEM; J-integral; Size effect phenomenon

Definitions

Due to the progress in nanotechnology, the size of the electronic components and devices has been significantly reduced in recent years. If the dimension of the structure is of the same order of magnitude as the material length scale, the classical electromechanical coupling theory of piezoelectricity fails to describe the observed size-dependent phenomenon. Discrete atomistic methods such as molecular dynamics simulations can be utilized to analyze nano-sized structures. However, the required computational cost of such methods can be too high to investigate realistic engineering problems. An alternative and less expensive possibility is the formulation of an advanced continuum mechanics model which takes the size effect phenomenon into account, where the strain and electric field gradients are included in the constitutive equations.

Introduction

Smart piezoelectric...

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aravas N, Giannakopoulos AE (2009) Plane asymptotic crack-tip solutions in gradient elasticity. Int J Solids Struct 46:4478–4503

    CrossRef  Google Scholar 

  • Argyris JH, Fried I, Scharpf DW (1968) The tuba family of plate elements for the matrix displacement method. Aeronaut J 72:701–709

    CrossRef  Google Scholar 

  • Baskaran S, He X, Chen Q, Fu JF (2011) Experimental studies on the direct flexoelectric effect in alpha-phase polyvinylidene fluoride films. Appl Phys Lett 98:242901

    CrossRef  Google Scholar 

  • Buhlmann S, Dwir B, Baborowski J, Muralt P (2002) Size effects in mesiscopic epitaxial ferroelectric structures: increase of piezoelectric response with decreasing feature-size. Appl Phys Lett 80:3195–3197

    CrossRef  Google Scholar 

  • Catalan G, Lubk A, Vlooswijk AHG, Snoeck E, Magen C, Janssens A, Rispens G, Rijnders G, Blank DHA, Noheda B (2011) Flexoelectric rotation of polarization in ferroelectric thin films. Nat Mater 10:963–967

    CrossRef  Google Scholar 

  • Cross LE (2006) Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J Mater Sci 41:53–63

    CrossRef  Google Scholar 

  • Exadaktylos G (1998) Gradient elasticity with surface energy: mode-I crack problem. Int J Solids Struct 35:421–456

    MathSciNet  CrossRef  Google Scholar 

  • Exadaktylos G, Vardoulakis I, Aifantis E (1996) Cracks in gradient elastic bodies with surface energy. Int J Fract 79: 107–119

    CrossRef  Google Scholar 

  • Fannjiang AC, Chan YS, Paulino GH (2002) Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach. SIAM J Appl Math 62:1066–1091

    MathSciNet  CrossRef  Google Scholar 

  • Gellmann R, Ricoeur A (2012) Some new aspects of boundary conditions at cracks in piezoelectrics. Arch Appl Mech 82:841–852

    CrossRef  Google Scholar 

  • Georgiadis HG, Grentzelou CG (2006) Energy theorems and the J integral in dipolar gradient elasticity. Int J Solids Struct 43:5690–5712

    MathSciNet  CrossRef  Google Scholar 

  • Gitman I, Askes H, Kuhl E, Aifantis E (2010) Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int J Solids Struct 47:1099–1107

    CrossRef  Google Scholar 

  • Hadjesfandiari AR (2013) Size-dependent piezoelectricity. Int J Solids Struct 50:2781–2791

    CrossRef  Google Scholar 

  • Hao TH, Shen ZY (1994) A new electric boundary condition of electric fracture mechanics and its applications. Eng Fract Mech 47:793–802

    CrossRef  Google Scholar 

  • Harden J, Mbanga B, Eber N, Fodor-Csorba K, Sprunt S, Gleeson JT, Jakli A (2006) Giant flexoelectricity of bent-core nematic liquid crystals. Phys Rev Lett 97:157802

    CrossRef  Google Scholar 

  • Hu SL, Shen SP (2009) Electric field gradient theory with surface effect for nano-dielectrics. CMC Comput Mater Continua 13:63–87

    Google Scholar 

  • Huang Y, Zhang L, Guo TF, Hwang KC (1997) Mixed mode near-tip fields for cracks in materials with strain-gradient effects. J Mech Phys Solids 45:439–465

    CrossRef  Google Scholar 

  • Karlis GF, Tsinopoulos SV, Polyzos D, Beskos DE (2007) Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity. Comput Methods Appl Mech Eng 196:5092–5103

    CrossRef  Google Scholar 

  • Kogan ShM (1964) Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov Phys Solid State 5:2069–2070

    Google Scholar 

  • Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Butterworth-Heinemann, Oxford, pp 358–371

    CrossRef  Google Scholar 

  • Landis CM (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 41:6291–6315

    CrossRef  Google Scholar 

  • Majdoub MS, Sharma P, Cagin T (2008) Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B 77:1–9

    CrossRef  Google Scholar 

  • Maugin GA (1980) The method of virtual power in continuum mechanics: applications to coupled fields. Acta Mech 35:1–80

    MathSciNet  CrossRef  Google Scholar 

  • Meyer RB (1969) Piezoelectric effects in liquid crystals. Phys Rev Lett 22:918–921

    CrossRef  Google Scholar 

  • Radi E (2003) Strain gradient effects on steady-state crack growth in linear hardening materials. J Mech Phys Solids 51:543–573

    MathSciNet  CrossRef  Google Scholar 

  • Sharma P, Maranganti R, Sharma ND (2006) Electromechanical coupling in nanopiezoelectric materials due to nanoscale nonlocal size effects: green function solution and embedded inclustions. Phys Rev B 74:014110

    CrossRef  Google Scholar 

  • Shen SP, Hu SL (2010) A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids 58:665–677

    MathSciNet  CrossRef  Google Scholar 

  • Shi MX, Huang Y, Hwang KC (2000) Fracture in a higher-order elastic continuum. J Mech Phys Solids 48: 2513–2538

    CrossRef  Google Scholar 

  • Shvartsman VV, Emelyanov AY, Kholkin AL, Safari A (2002) Local hysteresis and grain size effects in Pb(Mg1/3Nb2/3)O-SbTiO3. Appl Phys Lett 81: 117–119

    CrossRef  Google Scholar 

  • Sladek J, Sladek V, Stanak P, Zhang Ch, Wünsche M (2011) An interaction integral method for computing fracture parameters in functionally graded magnetoelectroelastic composites. CMC Comput Mater Continua 586:1–34

    Google Scholar 

  • Sladek J, Sladek V, Stanak P, Zhang Ch, Tan CL (2017) Fracture mechanics analysis of size-dependent piezoelectric solids. Int J Solids Struct 113:1–9

    CrossRef  Google Scholar 

  • Vardoulakis I, Exadaktylos G, Aifantis E (1996) Gradient elasticity with surface energy: mode-III crack problem. Int J Solids Struct 33:4531–4559

    CrossRef  Google Scholar 

  • Wang GF, Yu SW, Feng XQ (2004) A piezoelectric constitutive theory with rotation gradient effects. Eur J Mech A Solids 23:455–466

    CrossRef  Google Scholar 

  • Wei Y (2006) A new finite element method for strain gradient theories and applications to fracture analyses. Eur J Mech A Solids 25:897–913

    MathSciNet  CrossRef  Google Scholar 

  • Yaghoubi ST, Mousavi SM, Paavola J (2017) Buckling of centrosymmetric anisotropic beam structures within strain gradient elasticity. Int J Solids Struct 109:84–92

    CrossRef  Google Scholar 

  • Yang XM, Hu YT, Yang JS (2004) Electric field gradient effects in anti-plane problems of polarized ceramics. Int J Solids Struct 41:6801–6811

    CrossRef  Google Scholar 

  • Yang J (2004) Effects of electric field gradient on an antiplane crack in piezoelectric ceramics. Int J Fract 127:L111–L116

    CrossRef  Google Scholar 

  • Zhu W, Fu JY, Li N, Cross LE (2006) Piezoelectric composite based on the enhanced flexoelectric effects. Appl Phys Lett 89:192904

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by the Slovak Science and Technology Assistance Agency registered under number APVV-14-0216, VEGA 1/0145/17 and the Slovak Academy of Sciences Project (SASPRO) 0106/01/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wünsche .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Sladek, J., Sladek, V., Wünsche, M. (2018). Analysis of Cracks in Piezoelectric Solids with Consideration of Electric Field and Strain Gradients. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_237-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_237-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering