Skip to main content

Computational Methods for Coupled Problems

  • Living reference work entry
  • First Online:
Encyclopedia of Continuum Mechanics

Synonyms

Mathematical models for coupled problems

Definitions

Real materials very often appear as a mixture or a porous medium consisting of a solid matrix saturated by one or more fluid phases. Classical continuum mechanics can represent (but not always) their behaviors only by using very “ad hoc” phenomenological relationships. A more efficient modeling approach is to introduce balance equations for each component, that are usually smeared or “averaged” over the entire volume of the body. These equations contain also terms representing the physical (and/or chemical) interactions between the material components. The following definitions may be proposed (Markert, 2013):

  1. (1)

    coupled problem: is a problem in which physically or computationally heterogeneous components interact dynamically. The interaction is multi-way in the sense that the solution must be obtained by a simultaneous analysis of the coupled equations which model the problem;

  2. (2)

    coupled multi-field problem: is a problem...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Cheng AHD (2015) Poroelasticity. Springer, Berlin

    Google Scholar 

  • Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Book  Google Scholar 

  • Gaul L, Koegl M, Wagner M (2003) Boundary element methods for engineers and scientists. Springer, Berlin

    Book  Google Scholar 

  • Gawin D, Pesavento F, Schrefler BA (2002) Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water. Int J Numer Anal Meth Geomech 26:537–562

    Article  MATH  Google Scholar 

  • Gray WG, Schrefler BA (2001) Thermodynamic approach to effective stress in partially saturated porous media. Eur J Mech A/Solids 20:521–538

    Article  MATH  Google Scholar 

  • Gray WG, Miller CT (2005) Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv Water Resour 28:161–180

    Article  Google Scholar 

  • Gray WG, Miller CT (2009) Thermodynamically constrained averaging theory approach for modelling flow and transport phenomena in porous medium systems: 5. Single-fluid-phase transport. Adv Water Resour 32:681–711

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1979a) General conservation equations for multi-phase systems: 1. Averaging procedure. Adv Water Resour 2:131–144

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1979b) General conservation equations for multi-phase systems: 2. Mass, momenta, energy and entropy equations. Adv Water Resour 2:191–203

    Article  Google Scholar 

  • Hassanizadeh SM, Gray WG (1980) General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv Water Resour 3: 25–40

    Article  Google Scholar 

  • Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Leveque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New York

    MATH  Google Scholar 

  • Markert B (2013) A survey of selected coupled multifield problems in computational mechanics. J Coupled Syst Multiscale Dyn 1:22–48. https://doi.org/10.1166/jcsmd.2013.1007

    Article  Google Scholar 

  • Mascheroni P, Boso D, Preziosi L, Schrefler BA (2017) Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model. J Theor Biol 421:179–188

    Article  MathSciNet  MATH  Google Scholar 

  • Milanese E, Yilmaz O, Molinari JF, Schrefler BA (2016) Avalanches in dry and saturated disordered media at fracture. Phys Rev E 93(4):043002. https://doi.org/10.1103/PhysRevE.93.043002

    Article  Google Scholar 

  • Remij EW, Remers JJC, Huyghe JM, Smeulders DMJ (2015) The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput Methods Appl Mech Eng 286:293–312

    Article  MathSciNet  Google Scholar 

  • Santagiuliana R, Stigliano C, Mascheroni P, Ferrari M, Decuzzi P, Schrefler BA (2015) The role of cell lysis and matrix deposition in tumor growth modeling. Adv Model and Simul Eng Sci 2:19. https://doi.org/10.1186/s40323-015-0040-x455

    Article  Google Scholar 

  • Schrefler BA, Secchi S, Simoni L (2006) On adaptive refinement techniques in multi-field problems including cohesive fractures. Comput Meths Appl Mech Engrg 195:444–461

    Article  MATH  Google Scholar 

  • Schrefler BA, Codina R, Pesavento F, Principe J (2011) Thermal coupling of fluid flow and structural response of a tunnel induced by fire. Int J Numer Meths Eng 87:361–385

    Article  MathSciNet  MATH  Google Scholar 

  • Sciumè G, Benboudjema F, De Sa C, Pesavento F, Berthaud Y, Schrefler BA (2013) A multiphysics model for concrete at early age applied to repairs problems. Eng Struct 57:374–387

    Article  Google Scholar 

  • Sciumè G, Gray WG, Hussain F, Ferrari M, Decuzzi P, Schrefler BA (2014) Three phase flow dynamics in tumor growth. Comput Mech 53:465–484

    Article  MathSciNet  MATH  Google Scholar 

  • Secchi S, Simoni L (2003) An improved procedure for 2-D unstructured Delaunay mesh generation. Adv Eng Softw 34:217–234

    Article  MATH  Google Scholar 

  • Simoni L, Schrefler BA (2014) Multi field simulation of fracture. In: Bordas SPA (ed) Advances in applied mechanics. Academic Press, London, pp 367–519

    Google Scholar 

  • Simoni L, Secchi S, Schrefler BA (2008) Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media. Comp Mech 43:179–189

    Article  MATH  Google Scholar 

  • Turska E, Schrefler BA (1993) On convergence conditions of partitioned solution procedures for consolidations problems. Comp Meths Appl Mech Eng 106:51–63

    Article  MathSciNet  MATH  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  MATH  Google Scholar 

  • Zhan X, Schrefler BA, Simoni L (1995) Finite element simulation of multiphase flow, heat flow and solute transport in deformable porous media. In: Morandi Cecchi M, Morgan K, Periaux J, Schrefler BA, Zienkiewicz OCZ (eds) Finite elements in fluids – new trends and application, SM, Padova, pp 1283–1290

    Google Scholar 

  • Zienkiewicz OCZ, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Simoni .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Simoni, L., Schrefler, B.A. (2018). Computational Methods for Coupled Problems. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_23-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics