Skip to main content

Strain Gradient Plasticity

  • Living reference work entry
  • First Online:

Synonyms

Plasticity theory at small scales

; Size-dependent plasticity theory

Definitions

Strain gradient plasticity (SGP) is a theory of continuum solid mechanics which aims at modeling the irreversible mechanical behavior of materials, with specific focus on metals and on their response at appropriately small size, typically on the order of micrometers or less. For such small metallic components, a variation in size leads to a peculiar effect, denoted as “smaller being stronger.”

Background

The term plasticity refers to the irreversible mechanical behavior of materials, with particular reference to metals. This behavior occurs when the stress state is large enough for the material to yield, thus leading to a permanent deformation, denoted as plastic deformation. Such deformation can be observed, and the inherent plastic strain measured, after removing a suitable, monotonically applied load which enables yielding. In simple tests, such as uniaxial tension, the yield stressis...

This is a preview of subscription content, log in via an institution.

References

  • Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Tech-T ASME 106:326–330

    Article  Google Scholar 

  • Arsenlis A, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611

    Article  Google Scholar 

  • Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21:399–424

    Article  Google Scholar 

  • Bardella L (2009) A comparison between crystal and isotropic strain gradient plasticity theories with accent on the role of the plastic spin. Eur J Mech A-Solid 28:638–646

    Article  MATH  Google Scholar 

  • Bardella L (2010) Size effects in phenomenological strain gradient plasticity constitutively involving the plastic spin. Int J Eng Sci 48:550–568

    Article  MathSciNet  MATH  Google Scholar 

  • Bardella L, Panteghini A (2015) Modelling the torsion of thin metal wires by distortion gradient plasticity. J Mech Phys Solids 78:467–492

    Article  MathSciNet  MATH  Google Scholar 

  • Burgers JM (1939) Some considerations of the field of stress connected with dislocations in a regular crystal lattice. K Ned Akad Van Wet 42:293–325 (Part 1), 378–399 (Part 2)

    Google Scholar 

  • Carstensen C, Ebobisse F, McBride AT, Reddy BD, Steinmann P (2017) Some properties of the dissipative model of strain-gradient plasticity. Philos Mag 97: 693–717

    Article  Google Scholar 

  • Chiricotto M, Giacometti L, Tomassetti G (2016) Dissipative scale effects in strain-gradient plasticity: the case of simple shear. SIAM J Appl Math 76:688–704

    Article  MathSciNet  MATH  Google Scholar 

  • Del Piero G (2009) On the method of virtual power in continuum mechanics. J Mech Mater Struct 4:281–292

    Article  Google Scholar 

  • Dillon OW J, Kratochvíl J (1970) A strain gradient theory of plasticity. Int J Solids Struct 6:1513–1533

    Article  MATH  Google Scholar 

  • Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Article  MATH  Google Scholar 

  • Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    Article  MATH  Google Scholar 

  • Fleck NA, Willis JR (2009) A mathematical basis for strain-gradient plasticity theory. Part II: tensorial plastic multiplier. J Mech Phys Solids 57:1045–1057

    MATH  Google Scholar 

  • Fleck NA, Willis JR (2015) Strain gradient plasticity: energetic or dissipative? Acta Mech Sinica 31:465–472

    Article  MathSciNet  MATH  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiments. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW, Willis JR (2014) Strain gradient plasticity under non-proportional loading. Proc R Soc Lond A 470:20140267

    Article  Google Scholar 

  • Fleck NA, Hutchinson JW, Willis JR (2015) Guidelines for constructing strain gradient plasticity theories. J Appl Mech-T ASME 82:1–10

    Article  Google Scholar 

  • Forest S, Guéninchault N (2013) Inspection of free energy functions in gradient crystal plasticity. Acta Mech Sinica 29:763–772

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S, Sievert R (2003) Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech 160:71–111

    Article  MATH  Google Scholar 

  • Groma I, Györgyi G, Kocsis B (2007) Dynamics of coarse grained dislocation densities from an effective free energy. Philos Mag 87:1185–1199

    Article  Google Scholar 

  • Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52:1379–1406

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME (2004) A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J Mech Phys Solids 52:2545–2568

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Anand L (2009) Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck & Hutchinson and their generalization. J Mech Phys Solids 57: 405–421

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Needleman A (2005) Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector. J Mech Phys Solids 53: 1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Fried E, Anand L (2010) The mechanics and thermodynamics of continua. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64:747–753

    Article  Google Scholar 

  • Hayden W, Moffatt WG, Wulff J (1965) The structure and properties of materials: vol III, mechanical behavior. Wiley, New York

    Google Scholar 

  • Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity – II. Analysis. J Mech Phys Solids 48:99–128

    Article  MathSciNet  MATH  Google Scholar 

  • Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kröner E (1962) Dislocations and continuum mechanics. Appl Mech Rev 15:599–606

    Google Scholar 

  • Ma Q, Clarke DR (1995) Size dependent hardness in silver single crystals. J Mater Res 10:853–863

    Article  Google Scholar 

  • Martínez-Pañeda E, Niordson CF, Bardella L (2016) A finite element framework for distortion gradient plasticity with applications to bending of thin foils. Int J Solids Struct 96:288–299

    Article  Google Scholar 

  • Nielsen KL, Niordson CF (2014) A numerical basis for strain-gradient plasticity theory: rate-independent and rate-dependent formulations. J Mech Phys Solids 63:113–127

    Article  MathSciNet  MATH  Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocated crystals. Acta Metall 1:153–162

    Article  Google Scholar 

  • Panteghini A, Bardella L (2016) On the finite element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility. Comput Method Appl M 310:840–865

    Article  MathSciNet  Google Scholar 

  • Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  • Poh LH, Peerlings RHJ (2016) The plastic rotation effect in an isotropic gradient plasticity model for applications at the meso scale. Int J Solids Struct 78–79:57–69

    Article  Google Scholar 

  • Polizzotto C (2009) A link between the residual-based gradient plasticity theory and the analogous theories based on the virtual work principle. Int J Plasticity 25:2169–2180

    Article  Google Scholar 

  • Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  • Svendsen B, Bargmann S (2010) On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J Mech Phys Solids 58:1253–1271

    Article  MathSciNet  MATH  Google Scholar 

  • Valdevit L, Hutchinson JW (2012) Plasticity theory at small scales. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 3319–3327

    Google Scholar 

  • Wulfinghoff S, Forest S, Böhlke T (2015) Strain gradient plasticity modelling of the cyclic behaviour of laminate microstructures. J Mech Phys Solids 79:1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Zbib HM, Aifantis EC (1992) On the gradient-dependent theory of plasticity and shear banding. Acta Mech 92:209–225

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Bardella .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bardella, L. (2018). Strain Gradient Plasticity. In: Altenbach, H., Öchsner, A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53605-6_110-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53605-6_110-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53605-6

  • Online ISBN: 978-3-662-53605-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics