Skip to main content

Ion Beam Machining

  • Reference work entry
  • First Online:
CIRP Encyclopedia of Production Engineering
  • 297 Accesses

Synonyms

Focused ion beam; Ion beam etching; Ion beam figuring; Ion beam smoothing; Ion beam sputtering; Ion bombardment; Ion implantation; Sputter deposition

Definition

Ion beam machining (IBM) is an important nonconventional manufacturing technology used in micro-/nanofabrication, using a stream of accelerated ions by electrical means in a vacuum chamber to remove, add, or modify the atoms on the surface of the object. Mainly resulting from the energetic collision cascade, the ion beam removed or sputtered atoms from the workpiece by transferring sufficient ions’ energy and momentum to target atoms, and parts of the ions will finally implant into the substrate after losing energy (Machine Tool 2016; https://en.wikipedia.org/wiki/Ion_beam). IBM usually can be functional classified to ion sputtering/etching (remove material), ion sputter coating/ion-induced deposition (add material), and ion implantation (implant modification) (https://en.wikipedia.org/wiki/Ion_beam; Hellborg et al. 2009...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen DM, Shore P, Evans RW, Fanara C, O’Brien W, Marson S, O’Neill W (2009) Ion beam, focused ion beam, and plasma discharge machining. CIRP Ann Manuf Technol 58(2):647–662

    Article  Google Scholar 

  • Cui A, Li W, Shen TH, Yao Y, Fenton JC, Peng Y, Liu Z, Zhang J, Gu C (2013) Thermally induced shape modification of free-standing nanostructures for advanced functionalities. Sci Rep 3:2429

    Article  Google Scholar 

  • Fang F, Xu Z (2015) State-of-the-art for nanomanufacturing using ion beam technology. In: Handbook of manufacturing engineering and technology. Springer, London, pp 1279–1315

    Google Scholar 

  • Fang FZ, Xu ZW, Hu XT, Wang CT, Luo XG, Fu YQ (2010) Nano-photomask fabrication using focused ion beam direct writing. CIRP Ann Manuf Technol 59(1):543–546

    Article  Google Scholar 

  • Fang FZ, Chen YH, Zhang XD, Hu XT, Zhang GX (2011) Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Ann Manuf Technol 60(1):527–530

    Article  Google Scholar 

  • Hellborg R, Whitlow HJ, Zhang Y (2009) Ion beams in nanoscience and technology. Springer Science & Business Media, Heidelberg

    Google Scholar 

  • Hrnčíř T, Lopour F, Zadražil M, Delobbe A, Salord O, Sudraud P (2012) Novel plasma FIB/SEM for high speed failure analysis and real time imaging of large volume removal. In: ISTFA: conference proceedings from the 38th international symposium for testing and failure analysis, 2012, p 26

    Google Scholar 

  • Hu X, Xu Z, Li K, Fang F, Wang L (2015) Fabrication of a Au–polystyrene sphere substrate with three-dimensional nanofeatures for surface-enhanced Raman spectroscopy. Appl Surf Sci 355:1168–1174

    Article  Google Scholar 

  • Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA, Irwin RB, Stevie FA (2001) Ion channeling effects on the focused ion beam milling of Cu. J Vac Sci Technol B 19(3):749–754

    Article  Google Scholar 

  • Lehtinen O, Kotakoski J, Krasheninnikov AV, Tolvanen A, Nordlund K, Keinonen J (2010) Effects of ion bombardment on a two-dimensional target: atomistic simulations of graphene irradiation. Phys Rev B 81(15):153401

    Article  Google Scholar 

  • Libertino S, La Magna A (2009) Damage formation and evolution in ion-implanted crystalline Si. In: Materials science with ion beams. Springer, Berlin/Heidelberg, pp 147–212

    Chapter  Google Scholar 

  • Machine Tool (2016) In Encyclopædia Britannica. Retrieved from https://www.britannica.com/technology/machine-tool/Electrical-discharge-machining-EDM

  • Melli M, Polyakov A, Gargas D, Huynh C, Scipioni L, Bao W, Weber-Bargioni A (2013) Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. Nano Lett 13(6):2687–2691

    Article  Google Scholar 

  • Reyntjens S, Puers R (2001) A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4):287

    Article  Google Scholar 

  • Smith R, Harrison DE Jr, Garrison BJ (1989) keV particle bombardment of semiconductors: a molecular-dynamics simulation. Phys Rev B 40(1):93

    Article  Google Scholar 

  • Sun J, Luo X, Ritchie J, Hrncir T (2012) A predictive divergence compensation approach for the fabrication of three-dimensional microstructures using focused ion beam machining. Proc Inst Mech Eng B J Eng Manuf 226(2):229–238

    Article  Google Scholar 

  • Tong Z, Luo X (2015) Investigation of focused ion beam induced damage in single crystal diamond tools. Appl Surf Sci 347:727–735

    Article  Google Scholar 

  • Tseng AA (2004) Recent developments in micromilling using focused ion beam technology. J Micromech Microeng 14(4):R15

    Article  Google Scholar 

  • Volkert CA, Minor AM (2007) Focused ion beam microscopy and micromachining. MRS Bull 32(05):389–399

    Article  Google Scholar 

  • Xiao YJ, Fang FZ, Xu ZW, Hu XT (2015) Annealing recovery of nanoscale silicon surface damage caused by Ga focused ion beam. Appl Surf Sci 343:56–69

    Article  Google Scholar 

  • Xie X, Li S (2015) Ion beam figuring technology. In: Handbook of manufacturing engineering and technology. Springer, London, pp 1343–1390

    Google Scholar 

  • Xu ZW, Fang FZ, Fu YQ, Zhang SJ, Han T, Li JM (2009) Fabrication of micro/nano-structures using focused ion beam implantation and XeF2 gas-assisted etching. J Micromech Microeng 19(5):054003

    Article  Google Scholar 

  • Xu ZW, Fang FZ, Zhang SJ, Zhang XD, Hu XT, Fu YQ, Li L (2010) Fabrication of micro DOE using micro tools shaped with focused ion beam. Opt Express 18(8):8025–8032

    Article  Google Scholar 

  • Xu Z, Fang F, Gao H, Zhu Y, Wu W, Weckenmann A (2012) Nano fabrication of star structure for precision metrology developed by focused ion beam direct writing. CIRP Ann Manuf Technol 61(1):511–514

    Article  Google Scholar 

  • Xu ZW, Fang F, Zeng G (2015) Focused ion beam nanofabrication technology. In: Handbook of manufacturing engineering and technology. Springer, London, pp 1391–1423

    Google Scholar 

  • Ziegler JF (2004) SRIM-2003. Nucl Instrum Methods Phys Res, Sect B 219:1027–1036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhou Fang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CIRP

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fang, F., Xu, Z.W. (2019). Ion Beam Machining. In: Chatti, S., Laperrière, L., Reinhart, G., Tolio, T. (eds) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53120-4_6485

Download citation

Publish with us

Policies and ethics