Skip to main content

Strömungssieden – Wärmeübergang nach der Siedekrise

  • Living reference work entry
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

  • 1041 Accesses

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

Bei Rückfragen zu diesem Artikel wenden Sie sich bitte an Prof. Dr.-Ing. Matthias Kind (matthias.kind@kit.edu)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Groeneveld, D.C., Snoek, C.W.: Comprehensive examination of heat transfer correlations suitable for reactor safety analysis, Chapter 3. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (Hrsg.) Multiphase Science and Technology, Bd. 2. Hemisphere Publishing Corp./Springer, Washington, DC/Berlin (1986)

    Google Scholar 

  2. Mayinger, F.: Strömung und Wärmeübertragung in Gas­Flüssigkeitsgemischen. Springer, Wien (1984)

    Google Scholar 

  3. Katsaounis, A.: Post-dryout correlations and models compared to experimental data from different fluids. In: Proceedings of the XVIII International Symposium on Heat and Mass Transfer in Cryoengineering and Refrigeration. Hemisphere Publishing Corporation, Washington, DC (1987); ICHMT-Symposium, Sept. 1986, Dubrovnik, Yugoslavia. Preprint GKSS 86/E/41

    Google Scholar 

  4. Bergles, A.E., Collier, J.G., Delhaye, J.M., Hewill, G.F., Mayinger, F.: Two-Phase Flow and Heat Transfer in the Power and Process Industries. Hemisphere Publishing Corp., Washington, DC (1981)

    Google Scholar 

  5. Collier, J.G.: Post-dryout heat transfer -a review of the current position. Advanced Study Institute on Two-Phase Flows and Heat Transfer, Istanbul (1976)

    Google Scholar 

  6. Hetsroni, G.: Handbook of Multiphase Systems. Hemisphere Publishing Corp./McGraw-Hill Book Corp, Washington, DC/New York (1982)

    MATH  Google Scholar 

  7. Groeneveld, D.C., Leung, L.K.H., Vasic, A.Z., Guo, Y.J., Cheng, S.C.: A look-up table for fully developed film-boiling heat transfer. Nucl. Eng. Des. 225, 83/97 (2003)

    Article  Google Scholar 

  8. Köhler, W.: Einfluß des Benetzungszustandes der Heizflache auf Wärmeübergang und Druckverlust in einem Verdampferrohr. Dissertation, Chair A of Thermodynamics, Technical University of Munich (1984)

    Google Scholar 

  9. Hein, D., Köhler, W.: The role of thermal non-equilibrium in post-dryout heat transfer. European Two-Phase Flow Group Meeting, Grenoble (1977)

    Google Scholar 

  10. Hein, D., Köhler, W.: A simple-to-use post-dryout heat transfer model accounting for thermal non-equilibrium. In: Proceedings of the 1st International Workshop on Fundamental Aspects of Post Dryout Heat Transfer, Salt Lake City (1986)

    Google Scholar 

  11. Gnielinski, V.: Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren and Kanälen. Forsch.-Ing. Wes. 41(1), 8–16 (1975)

    Article  Google Scholar 

  12. Groeneveld, D.C., Delorme, G.G.J.: Prediction of thermal non-equilibrium in the post-dryout regime. Nucl. Eng. Des. 36, 17/26 (1976)

    Article  Google Scholar 

  13. Saha, P.: A non-equilibrium heat transfer model for dispersed droplet post-dryout regime. Int. J. Heat Mass Transf. 23, 483/92 (1980)

    Article  Google Scholar 

  14. Chen, J.C., Ozkaynak, F.T., Sundaram, R.K.: Vapor heat transfer in post-CHF region including the effect of thermodynamic non-equilibrium. Nucl. Eng. Des. 51, 143–155 (1979)., and: A Phenomenological Correlation for Post-CHF Heat Transfer. Nuclear Regulatory Commission of USA NUREG-0237 (1977)

    Article  Google Scholar 

  15. Webb, W., Chen, J.C., Sundaram, R.K.: Vapor generation rate in non-equilibrium convective film boiling. In: International Heat Transfer Conference, Bd. 4, FB 45, S. 437–442. Munich (1982)

    Google Scholar 

  16. Herkenrath, H., Mörk-Mörkenstein, P., Jung, K., Weckermann, F.­J.: Wärmeübergang am Wasser bei erzwungener Strömung im Bereich von 140 bis 250 bar. EUR 3658d (1967)

    Google Scholar 

  17. Becker, K.M., Ling, C.H., Hedberg, S., Strand, G.: An Experimental Investigation of the Post Dryout Heat Transfer. KTH-NEL 33. Royal Institute of Technology, Stockholm (1983)

    Google Scholar 

  18. Schnittger, R.B.: Untersuchungen zum Wärmeübergang bei vertikalen und horizontalen Rohrströmungen im Post-dryout­Bereich. Dissertation, Technical University of Hannover 1982, cf. Chem.-Ing.­Techn. 54(10) (1982)

    Google Scholar 

  19. Hendricks, R.C., Graham, R.W., Hsu, Y.Y., Medeiros, A.A.: Correlation of hydrogen heat transfer in boiling and super­critical pressure states. ARS J. 32, 244–252 (1962)., and NASA Technical Notes D-765, May 1961

    Article  Google Scholar 

  20. Grigull, K.: Zustandsgrößen von Wasser und Wasserdampf in SI-Einheiten. Springer, Berlin (1982)

    Google Scholar 

  21. Katsaounis, A.: Zur Berechnung der Wärmeübertragung nach der Siedekrise. GKSS Research Center Report GKSS 88/E/46 (1988)

    Google Scholar 

  22. Groeneveld, D.C.: An Investigation of Heat Transfer in the Liquid-Deficient Regime. AECL-3281. Atomic Energy of Canada Limited (1969)

    Google Scholar 

  23. Miropol’skiy, Z.L.: Heat transfer in film boiling of a steam­water mixture in steam generating tubes. Teploenergetika. 10(5), 49/53 (1963)

    Google Scholar 

  24. Dimmick, G.R.: Measurements of Drypatch Spreading and Post-Dryout Temperatures in a 3-Rod Bundle Cooled by Freon 12 in Vertical and Horizontal Orientation. AECL-6683. Atomic Energy of Canada Limited (1979)

    Google Scholar 

  25. Hynek, L., Rohsenow, W.M., Bergles, A.B..: Forced convec­tion dispersed flow film boiling. Massachusetts Institute of Technology -Heat Transfer Lab. Report No. DSR-70586.63 (1969)

    Google Scholar 

  26. Plummer, D.N., Iloeje, O.C., Rohsenow, W.M., Griffith, P., Ganic, E.: Post-critical heat transfer to flowing liquid in a vertical tube. Massachusetts Institute of Technology -Department of Mechanical Engineering Report No. 72718-91 (1974)

    Google Scholar 

  27. Hein, D., KastnerW., Köhler, W.: Influence of the orientation of a flow channel on the heat transfer in a boiler tube. European Two-Phase Flow Group Meeting, Paris (1982)

    Google Scholar 

  28. Taitel, Y., Dukler, A.E.: A model for predicting flow transition in horizontal and near horizontal gas-liquid flow. AIChE J. 22(1), 47–95 and 900 (1976)

    Article  Google Scholar 

  29. Wallis, G.B.: One-Dimensional Two-Phase Flow. McGraw-Hill, New York (1969)

    Google Scholar 

  30. Hein, D., Kastner, W., Köhler, W.: Einfluß der Rohrlänge auf den Wärmeübergang in einem Verdampferrohr. Brennst. Wärme-Kraft. 34, 489–493 (1982)

    Google Scholar 

  31. Kefer, V., Köhler, W., Kastner, W.: Critical heat flux (CHF) and post-CHF heat transfer in horizontal and inclined evaporator tubes. Int. J. Multiphase Flow. 15(3), 386–392 (1989)

    Article  Google Scholar 

  32. Kanzaka, M., Iwabuchi, M., Matsuo, T., Haneda, H., Yamamoto: Heat transfer characteristics of horizontal smooth tube in high pressure region. In: International Heat Transfer Conference, Bd. 5, S. 2173–2178. San Francisco (1986)

    Google Scholar 

  33. Auracher, H.: Partielles Filmsieden in Zweiphasenströmungen. Fortschr.-Ber. VDI, Reihe 3, Nr. 142. VDIVerlag (1987)

    Google Scholar 

  34. Bui, T.D., Dhir, V.K.: Transition boiling heat transfer on a vertical surface. Trans. ASME J. Heat Transfer. 107, 756–763 (1985)

    Article  Google Scholar 

  35. Weber, P.: Experimentelle Untersuchungen zur Siedekrise und zum Übergangssieden von strömendem Wasser unter erhöhtem Druck. Dissertation, TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 226, VDIVerlag, Düsseldorf (1990)

    Google Scholar 

  36. Huang, X.: Vergleichende Untersuchung von Siedevorgängen aus temperaturgeregelten Messungen und Quenchingversuchen bei erzwungener Strömung von Wasser. Dissertation, TZ-Berlin. Fortschr.-Ber. VDI, Reihe 19, Nr. 65, VDIVerlag, Düsseldorf (1993)

    Google Scholar 

  37. France, D.M., Chan, I.S., Shin, S.K.: High-Pressure Transition Boiling in Internal Flows. J. Heat Transf. Trans. ASME. 109, 498–502 (1987)

    Article  Google Scholar 

  38. Katsaounis, A.: A Prediction Method of the transition boiling heat transfer in vertical tubes during forced convection in comparison to experimental data. In: Proceedings of the 2nd European Thermal-Science Conference, Bd. 1, S. 425–432, Rome, 29–31 May (1996)

    Google Scholar 

  39. Weber, P., Johannsen, K.: Convective transition boiling of water at medium pressure. In: Proceedings of the Ninth International Heat Transfer Conference, Bd. 6, S. 35–40, Jerusalem, Aug (1990)

    Google Scholar 

  40. Schroeder-Richter, D.: Ein analytischer Beitrag zur Anwendung der Thermodynamik irreversible Prozesse auf Siedephänomene. Dissertation, TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 251, VDIVerlag, Düsseldorf (1991)

    Google Scholar 

  41. Ragheb, H.S., Cheng, S.C., Groeneveld, D.C.: Observations in Transition Boiling of Subcooled Water under Forced Convective Conditions. Int. J. Heat Mass Transf. 24, 1127–1137 (1981)

    Article  Google Scholar 

  42. Cheng, S.C., Ng, W.W.L., Heng, K.T.: Measurement of Boiling Curves of Subcooled Water under Convective Conditions. Int. J. Heat Mass Transf. 21, 1387–1392 (1987)

    Google Scholar 

  43. Katsaounis, A., Fulfs, H., Kreubig, M.: Experimental results of critical heat flux measurements in 25-rod bundles with different types of grid spacers. In: Bankoff, S.G., Afgan, N.H. (Hrsg.) Proceedings of the Heat Transfer in Nuclear Reactor Safety. International Centre for Heat and Mass Transfer. Hemisphere Publishing Corporation, Washington, DC (1982)

    Google Scholar 

  44. Breem, B.P., Westwater, J.W.: Effect of diameter of horizontal tubes on film boiling heat transfer. Chem. Eng. Prog. 58, 67–72 (1962)

    Google Scholar 

  45. Groeneveld. D.C.: Inverted annular and low quality film boiling. A state-of-the-art report. In: Proceedings of the 1st International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City (1984)

    Google Scholar 

  46. Leonard, J. E., Sun, K. H., Dix, G. E.: Low flow film boiling heat transfer on vertical surfaces. Solar and Nuclear Heat Transfer, AIChE-Symposium Series, No. 164, Bd. 73 (1976)

    Google Scholar 

  47. Denham, M. K.: Inverted Annular Film Boiling and the Bromley Model. AEEW-R, Bd. 1950. United Kingdom Atomic Energy Authority (1983)

    Google Scholar 

  48. Bressler, R.G.: A review of physical models and heat transfer correlations for free-convection film boiling. Adv. Cryog. Eng. 17(K-2), 382–406 (1972)

    Google Scholar 

  49. Hsu, Y.Y.: A review of film boiling at cryogenic tempera­tures. Adv. Cryog. Eng. 17, 361–381 (1972)

    Google Scholar 

  50. Sparrow, E.M., Cess, R.D.: The effect of subcooled boiling on laminar film boiling. Trans. ASME J. Heat Transf. 84, 149–156 (1962)

    Article  Google Scholar 

  51. Nishikawa, K.T., Ito, T.: Two-phase boundary layer treatment of free convective-film boiling. Int. J. Heat Mass Transf. 9, 103–115 (1966)

    Article  Google Scholar 

  52. Greitzer, E.M., Abernathy, F.H.: Film boiling on vertical surfaces. Int. J. Heat Mass Transf. 15, 475–491 (1972)

    Article  Google Scholar 

  53. Lauer, H.: Untersuchung des Wärmeübergangs und der Wiederbenetzung beim Abkühlen heißer Metallkörper. EUR. 5702d (1976)

    Google Scholar 

  54. Lauer, H., Hufschmidt, W.: Heat transfer and surface rewet during quenching. Advanced Study Institute on Two-Phase Flows and Heat Transfer, Istanbul (1976)

    Google Scholar 

  55. Bromley, L.A., Leroy, N.R., Robbers, J.A.: Heat transfer in forced convection film boiling. Ind. Eng. Chem. 45(I), 2639–2646 (1953)

    Article  Google Scholar 

  56. Motte, E.I., Bromley, L.A.: Film boiling of flowing sub­cooled liquids. Ind. Eng. Chem. 49(II), 1921–1928 (1957)

    Article  Google Scholar 

  57. Sudo, Y.: Film boiling heat transfer during reflood phase in postulated PWR-LOCA. J. Nucl. Sci. Technol. 7, 516–530 (1980)

    Article  Google Scholar 

  58. Stewart, J.C., Groeneveld, D.C.: Low quality and sub­cooled film boiling of water at elevated pressures. Nucl. Eng. Des. 67, 259–272 (1981)

    Article  Google Scholar 

  59. Raznjevic, K.: Thermodynamische Tabellen. VDIVerlag, Düsseldorf (1977)

    Google Scholar 

  60. Vargaftik, N.B.: Tables on the Thermo Physical Properties of Liquids and Gases. Hemisphere Publishing Corp., Washington, DC/London (1975)

    Google Scholar 

  61. Leidenfrost, J.G.: On the fixation of water in diverse fire. Int. J. Heat Mass Transf. 9, 1153–1166 (1966)

    Article  Google Scholar 

  62. Schroeder-Richter, D., Bartsch, G.:The Leidenfrost Phenomenon Caused by a Thermodynamical Effect of Transition Boiling: A revised Problem of Non-equilibrium Thermodynamics. In: Witte, L.C., Avedisian, C.T (Hrsg.) Proceedings of the Fundamentals of Phase Change, Boiling and Condensation, New York, ASME-HTD, Bd. 136, S. 13–20 (1990)

    Google Scholar 

  63. Hein, D,. Kefer, V., Liebert, H.: Maximum wetting temperatures up to critical pressure. In: Proceedings of the 1st International Workshop of Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City (1984)

    Google Scholar 

  64. Kefer, V.: Der Einfluß des Druckes auf das Benetzungsverhalten. Diploma thesis A. Institute of Thermodynamics, Technical University of Munich (1982)

    Google Scholar 

  65. Groeneveld, D.C., Stewart, J.C.: The minimum film boiling temperature for water during film boiling collapse. In: International Heat Transfer Conference Munich, Paper FB 37, Bd. 4, S. 393–398 (1982)

    Google Scholar 

  66. Feng, Q., Johannsen, K.: The high-temperature limit of the transition boiling regime for water in vertical upflow at medium pressure. In: Proceedings of the Ninth International Heat Transfer Conference, Bd. 6, S. 29–34, Jerusalem, Israel, Aug (1990)

    Google Scholar 

  67. Hein, D.: Modellvorstellungen zum Wiederbenetzen durch Fluten. Dissertation, Technical University of Hanover (1981)

    Google Scholar 

  68. Yao, S., Henry, R.E.: An investigation of the minimum film boiling temperature on horizontal surfaces. Trans. ASME. J. Heat Transf. 100, 260–267 (1978)

    Article  Google Scholar 

  69. Michiyoshi, I., Makino, K.: Heat transfer characteristics of evaporation of a liquid droplet on heated surfaces. Int. J. Heat Mass Transf. 21, 605–613 (1978)

    Article  Google Scholar 

  70. Chowdhury, K., Winterton, R.H.: Transition boiling on surfaces of different surface energy. In: Proceedings of the 1st International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City (1984)

    Google Scholar 

  71. Emmerson, G.S., Snoek, C.W.: The effect of pressure on the Leidenfrost point of discrete drops of water and freon on a brass surface. Int. J. Heat Mass Transf. 21, 1081–1086 (1978)

    Article  Google Scholar 

  72. Feng, Q.: Experimentelle Untersuchungen zur maximalen Temperatur des Übergangssiedens bei erzwungener Wasserströmung bis 1,2 MPa. Dissertation, TU-Berlin. Fortschr.-Ber. VDI, Reihe 3, Nr. 265. VDIVerlag, Düsseldorf (1991)

    Google Scholar 

  73. Bradfield, W.S.: On the effect of subcooling on wall superheat in pool boiling. J. Heat Transf. ASME. 89, 269–270 (1967)

    Article  Google Scholar 

  74. Henry, R.E.: A correlation of the minimum film boiling temperature. Heat Transfer -Research and Design. AIChE-Symposium Series No. 138, Bd. 70 (1974)

    Google Scholar 

  75. Berenson, P.J.: Film-boiling heat transfer from a horizontal surface. Trans. ASME J. Heat Transfer 83(3), 351–356 (1961)

    Google Scholar 

  76. Kalinin, E.K., Yarkho, A., Berlin, I.I., Kochelaev, Yu., Kostyuk, V. V.: Investigations of the crisis of film boiling channels. In: Proceedings of the Two-Phase Flow and Heat Transfer in Rod Bundles. ASME-Winter Annual Meeting, Los Angeles (1969)

    Google Scholar 

  77. Komnos, A.: Ein thermohydrodynamisches Modell zur Wiederbenetzung. Dissertation, A. Institute of Thermodynamics, Technical University of Munich (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Katsaounis, A. (2019). Strömungssieden – Wärmeübergang nach der Siedekrise. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics