Skip to main content

Strömungssieden unterkühlter Flüssigkeiten

  • Living reference work entry
  • First Online:
  • 882 Accesses

Part of the book series: Springer Reference Technik ((VDISR))

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas

Bearbeitung einer Vorlage von Jens J. Schröder

This is a preview of subscription content, log in via an institution.

Literatur

  1. Bar-Cohen, A., Simon, T.W.: Wall superheat excursions in the boiling incipience of dielectric fluids. Heat Transfer Eng. 9, 19–31 (1988)

    Article  Google Scholar 

  2. You, S.M., Simon, T.W., Bar-Cohen, A., Tong, W.: Experimental inves- tigation of nucleate boiling incipience with a highly-wetting dielectric fluid (R-113). Int. J. Heat Mass Transf. 33, 105–117 (1990)

    Article  Google Scholar 

  3. Tong, W., Bar-Cohen, A., Simon, T.W., You, S.M.: Contact angle effects on boiling incipience of highly-wetting liquids. Int. J. Heat Mass Transf. 33, 91–103 (1990)

    Article  Google Scholar 

  4. You, S.M., Simon, T.W., Bar-Cohen. A.: Experiments on boiling incipience with highly-wetting dielectric fluid; effects of pressure, subcooling and dis- solved gas content. In: Proceedings. 9th International Heat Transfer Conference, Jerusalem, Aug. 1990, Bd. 2, S. 337–342 (1990)

    Google Scholar 

  5. Dix GE.: Vapor void fraction for forced convection with subcooled boiling at low flow rates. Ph.D. Thesis, University of California, Berkeley (1971)

    Google Scholar 

  6. Gnielinski, V.: On heat transfer in tubes. Int. J. Heat Mass Transf. 63, 134–140 (2013)

    Article  Google Scholar 

  7. Clausse, A., Lahey, R.T.: The influence of flow development on sub- cooled coiling. Int. Comm. Heat Mass Transfer 17, 545–554 (1990)

    Article  Google Scholar 

  8. Hodgson, A.S.: Forced convection subcooled boiling heat transfer with water in an electrically heated tube at 100 to 550 lb/in. Trans. Instn. Chem. Engrs. 46, 25–31 (1968)

    Google Scholar 

  9. Bergles, A.E., Rohsenow, W.M.: The determination of forced-convection surface boiling heat transfer. J. Heat Transf. 86, 365–372 (1964)

    Article  Google Scholar 

  10. Ünal, H.C.: Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water. Int. J. Heat Mass Transf. 20, 409–419 (1977)

    Article  Google Scholar 

  11. Guglielmini, G., Nannei, E., Pisoni, C.: Survey of heat transfer correlations in forced convection boiling. Wärme- und Stoffübertragung 13, 177–185 (1980)

    Article  Google Scholar 

  12. Bräuer, H., Mayinger, F.: Subcooled boiling heat transfer to R12 in an annular vertical channel. Chem. Eng. Technol. 11, 320–327 (1988)

    Article  Google Scholar 

  13. Bucher, B.: Beitrag zum Siedebeginn beim unterkühlten Sieden mit Zwangskonvektion. Dissertation, University Hannover (1979)

    Google Scholar 

  14. Müller-Steinhagen, H., Epstein, N., Watkinson, A.P.: Effect of dissolved gases on subcooled flow boiling heat transfer. Chem. Eng. Process 23, 115–124 (1988)

    Google Scholar 

  15. Bartolini, R., Guglielmini, G., Nannei, E.: Experimental study on nucleate boiling of water in vertical upflow and downflow. Int. J. Multiphase Flow 9(2), 161–165 (1983)

    Article  Google Scholar 

  16. Sudo, Y., et al.: Experimental study of incipient nucleate boiling in narrow vertical rectangular channel simulating subchannel of upgraded JRR-3. J. Nucl. Sci. Technol. 23, 73–82 (1986)

    Article  Google Scholar 

  17. Hein, D., Kastner, W., Köhler, W.: Der Einfluß der Strömungsrichtung auf den Wärmeübergang in einem Verdampferrohr. Vortrag der KWU Erlangen auf der GVC-Fachausschußsitzung Freudenstadt (1982)

    Google Scholar 

  18. Saha, A., Zuber, N.: Point of net vapor generation and vapor void fraction in subcooled boiling. In: Proceedings of the Fifth International Heat Transf Conf, Tokyo, IV, S. 175–179 (1974)

    Google Scholar 

  19. Bartolomei, C.G., Chun, L.T., Huo, N.C.: Heat transfer. Sov. Res. 16(4), 60–63 (1985)

    Google Scholar 

  20. Rogers, J.T., Salcudean, M., Abdullah, Z., McLeod, D., Poirier, D.: The onset of significant void in up-flow of water at low pressure and velocities. Int. J. Heat Mass Transf. 30, 2247–2260 (1987)

    Article  Google Scholar 

  21. Moles, F.D., Shaw, J.F.C.: Boiling heat transfer to subcooled liquids under conditions of forced convection. Trans. Instn. Chem. Engrs. 50, 76–84 (1972)

    Google Scholar 

  22. Badiuzzaman, M.: The Pakistan Eng. 7, 759 (1967)

    Google Scholar 

  23. Kreith, F., Summerfield, M.: Pressure drop and convective heat transfer with surface coiling at high heat flux; data for aniline and n-butyl alcohol. J. Heat Transf. 72, 869–879 (1950)

    Google Scholar 

  24. Noel, M.B.: Experimental investigation of the forced-convection and nucleate boiling heat transfer characteristics of liquid ammonia. Calif. Inst. of Technology, Pasadena, Technical Report 32/125 AND Experimental investigation of heat transfer chracteristics of hydrazine. Calif. Inst. of Technology, Pasadena, Technical Report 32/109 (1961)

    Google Scholar 

  25. Spindler, K., Shen, N., Hahne, E.: Vergleich von Korrelationen zum Wär- meübergang beim unterkühlten Sieden. Wärme- und Stoffübertragung 25(2), 101–109 (1990)

    Article  Google Scholar 

  26. Chen, J.C.: Correlation for boiling heat transfer to saturated fluids in convective flow. I et EC Process Des. Dev. 5(3), 322–329 (1996)

    Article  Google Scholar 

  27. Bergles, A.E., Collier, J.G., et al.: Two-phase flow and heat transfer in the power and process industries. Hemisphere Publishing, Washington/New York/London (1981)

    Google Scholar 

  28. Gungor, K.E., Winterton, R.H.S.: A general correlation for flow boiling in tubes and annuli. Int. J. Heat Mass Transf. 29, 351–358 (1986)

    Article  Google Scholar 

  29. Gungor, K.E., Winterton, R.H.S.: Simplified general correlation for Satu- rated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Des. 65, 148–179 (1987)

    Google Scholar 

  30. Forster, H.K., Zuber, H.: Dynamics of vapour bubbles and boiling heat transfer. AIChE J. 9(4), 531ff (1955)

    Article  Google Scholar 

  31. Del Valle, V.H., Kenning, D.B.R.: Subcooled flow boiling at high heat flux. Int. J. Heat Mass Transf. 28, 1907–1920 (1985)

    Article  Google Scholar 

  32. Rouhani, S.Z.: Void measurements in the region of subcooled low quality boiling. Part II, AE-RTL-849 (1966)

    Google Scholar 

  33. Rouhani, S.Z.: Experimental and theoretical studies of vapour volume fraction in two-phase flow. Dissertation Norwegen (1979)

    Google Scholar 

  34. Jain, P.K., Nourmohammadi, K., Roy, R.P.: A study of forced convective subcooled boiling in heated annular channels. Nucl. Eng. Des. 60, 401–411 (1980)

    Article  Google Scholar 

  35. Zuber, N., Findlay, J.A.: Average volumetric concentration in two-phase flow systems. J. Heat Transf. 87, 453–468 (1965)

    Article  Google Scholar 

  36. Levy, S.: Forced convection subcooled boiling – prediction of vapor volumetric fraction. Int. J. Heat Mass Transf. 10, 951–965 (1967)

    Article  Google Scholar 

  37. Tarasova, N.V., Orlov, V.M.: Teploenergetika. 6, 48–52 (1962)

    Google Scholar 

  38. Dormer, J., Bergles, A.E.: Pressure drop with surface boiling in small- diameter tubes. Mass. Inst. Technical Report No. 8767–31 (1964)

    Google Scholar 

  39. Mayinger, F., Bärmann, D., Hein, D.: Hydrodynamische Vorgänge und Stabilität der Strömung bei unterkühltem Sieden. Chem. Ing. Techn. 40, 515 ff (1968)

    Article  Google Scholar 

  40. Hoffman, M.A., Wong, C.F.: Prediction of pressure drops in forced convection subcooled boiling water flows. Int. J. Heat Mass Transf. 35, 3291–3299 (1992)

    Article  Google Scholar 

  41. Bartolomei, G.G., Kovrizhnykh, V.P.: Correlation of experimental data on hydraulic resistance with subcooled boiling. Therm. Eng. 38(12), 669–672 (1991)

    Google Scholar 

  42. Hahne, E., Spindler, K., Skok, H.: A new pressure drop correlation for subcooled flow boiling of refrigerants. Int. J. Heat Mass Transf. 36(17), 4267–4274 (1993)

    Article  Google Scholar 

  43. Bibeau, E.L., Salcudean, M.: The effect of flow direction on void growth at low velocities and low pressures. Int. Comm. Heat Mass Transf. 17, 19–25 (1990)

    Google Scholar 

  44. Bibeau, E.L., Salcudean, M.: (1993): Subcooled void growth for finned and circular annular geometries at low pressures and low velocities. Exp. Heat Transf. 3, 1183–1190

    Google Scholar 

  45. Staub, F.W.: The void fraction in subcooled boiling – prediction of the initial point of net vapor generation. J. Heat Transf. 90, 151–156 (1968)

    Article  Google Scholar 

  46. Costa, J.: Mesure de la perle de pression par acceleration et étude de l’ apparition du taux de vide en ébullition locale à basse pression. Note TT No. 244, Ceng, Grenoble, France (1967)

    Google Scholar 

  47. Dougall, R.S., Lippert, T.E.: Net vapour generation point in boiling flow of Trichlorotrifluoroethane at high pressures. NASA Contractor Report No. 2241 (1971)

    Google Scholar 

  48. Edelmann, Z., Elias, E.: Void fraction distribution in low flow rate subcooled boiling. Nucl. Eng. Des. 66, 375–382 (1981)

    Article  Google Scholar 

  49. Evangelisti, R., Lupoli, P.: The void fraction in an annular channel at atmospheric pressure. Int. J. Heat Mass Transf. 12, 699–711 (1969)

    Article  Google Scholar 

  50. Griffith, P., Clark, J.A., Rohsenow, W.M.: Void volumes in subcooled boiling systems. ASME Paper, No. 58-HT-19 (1958)

    Google Scholar 

  51. Hino, R., Ueda, T.: Studies on heat transfer and flow characteristics in subcooled flow boiling, Part 1: Boiling characteristics. Int. J. Multiphase Flow 11, 269–281 (1985)

    Article  Google Scholar 

  52. Egen, R.A., Dingee, D.A., Chastain, J.W.: Vapor Formation and Behavior in Boiling Heat Transfer, BMI-Report No. 1163, Battelle Memorial Institute, Columbus, Ohio (USA) (1957)

    Google Scholar 

  53. Ferrel, J.K.; A study of Convection Boiling Inside Channels, cited in [36] (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kind .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kind, M., Wetzel, T. (2018). Strömungssieden unterkühlter Flüssigkeiten. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics