Skip to main content

Wärmeübertrager: Berechnungsmethoden

Book cover VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

  • 216 Accesses

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Martin, H.: Wärmeübertrager. Thieme, Stuttgart/New York (1988)

    Google Scholar 

  2. Gaddis, E.S., Schlünder, E.U.: Temperaturverlauf und übertragbare Wärmemenge in Röhrenkesselapparaten mit Umlenkblechen. Verfahrenstechnik 9(12), 617–621 (1975)

    Google Scholar 

  3. Gaddis, E.S.: Über die Berechnung des Austauscherwirkungsgrades und der mittleren Temperaturdifferenz in mehrgängigen Rohrbündelwärmeaustauschern mit Umlenkblechen. Verfahrenstechnik 12(3), 144–149 (1978)

    Google Scholar 

  4. Das, S.K., Roetzel, W.: The axial dispersion model for heat transfer equipment: a review. Int. J. Transp. Phenom. 6, 23–49 (2004)

    Google Scholar 

  5. Roetzel, W., Na Ranong, C., Fieg, G.: New axial dispersion model for heat exchanger design. Heat Mass Transf. 44, 1009–1017 (2011)

    Article  Google Scholar 

  6. Roetzel, W., Spang, B.: Verbessertes Diagramm zur Berechnung von Wärmeübertragern. Wärme Stoffübertragung 25, 259–264 (1990)

    Article  Google Scholar 

  7. Spang, B., Roetzel, W.: Neue Näherungsgleichung zur einheitlichen Berechnung von Wärmeübertragern. Heat Mass Transf. 30, 417–422 (1995)

    Article  Google Scholar 

  8. Roetzel, W., Spang, B.: Analytisches Verfahren zur thermischen Berechnung mehrgängiger Rohrbündelwärmeübertrager. Fortschr.-Ber. VDI, Reihe 19, Nr. 18. VDI-Verlag, Düsseldorf (1987)

    Google Scholar 

  9. Roetzel, W., Spang, B.: Thermal calculation of multipass shell and tube heat exchangers. Chem. Eng. Res. Des. 67, 115–120 (1989)

    Google Scholar 

  10. Ishihara, K., Palen, J.W.: Mean temperature difference correction factor for the TEMA „H“ shell. Heat Transfer Eng. 7(3−4), 27–34 (1986)

    Google Scholar 

  11. Underwood, A.J.V.: The calculation of the mean temperature difference in multi-pass heat exchangers. J. Inst. Pet. Technol. 20, 145–158 (1934)

    Google Scholar 

  12. Roetzel, W.: Thermische Berechnung von dreigängigen Rohrbündelwärmeübertragern mit zwei Gegenstromdurchgängen gleicher Größe. Wärme Stoffübertragung 22, 3–11 (1988)

    Article  Google Scholar 

  13. Gardner, K.A.: Mean temperature difference in multipass exchangers − correction factors with shell fluid unmixed. Ind. Eng. Chem. 33, 1495–1500 (1941)

    Article  Google Scholar 

  14. Jaw L (1964) Temperature relations in shell and tube exchangers having one-pass split-flow shells. J. Heat Transf. 86:408−416

    Google Scholar 

  15. Schindler, D.L., Bates, H.T.: True temperature difference in a 1–2 divided flow heat exchanger. Chem. Eng. Progr. Symp. Ser. No. 30 (56), 203−206 (1960)

    Google Scholar 

  16. Martin, H.: Compact new formulae for mean temperature difference and efficiency of heat exchanger. In: Roetzel, W., Heggs, P.J., Butterworth, D. (Hrsg.) Design and Operation of Heat Exchangers, Proceedings of Eurotherm Seminar No. 18, Hamburg, Feb. 27−March 1, 1991, S. 19–29. Springer, Berlin/Heidelberg/New York (1992)

    Google Scholar 

  17. Bowman, R.A.: Mean temperature difference correction in multipass exchangers. Ind. Eng. Chem. 28, 541–544 (1936)

    Article  Google Scholar 

  18. Gardner, K.A., Taborek, J.: Mean temperature difference: A reappraisal. AIChE J. 23, 777–786 (1977)

    Article  Google Scholar 

  19. Nußelt, W.: Eine neue Formel für den Wärmeübergang im Kreuzstrom. Tech. Mech. U. Therm. 1, 417–422 (1930)

    Google Scholar 

  20. Mason, J.L.: Heat transfer in cross-flow. Proc. 2nd US Natnl. Congr. Appl. Mech. ASME. 801−803 (1955)

    Google Scholar 

  21. Smith, D.M.: Mean temperature difference in cross flow. Engineering 138, 479–481 und 606–607 (1934)

    Google Scholar 

  22. Stevens, R.A., Fernandez, J., Woolf, J.R.: Mean temperature difference in one, two and three-pass crossflow heat exchangers. Trans. ASME. 79, 287–297 (1957)

    Google Scholar 

  23. Nicole, F.J.L.: Mean temperature difference in cross-flow heat exchange, applied to multipass air-cooled fin-tube units with a finite number of rows. MSc (Engng.) Thesis, University of Pretoria, CSIR Special Report CHEM 223 (1972)

    Google Scholar 

  24. Spang, B., Roetzel, W.: Approximate equations for the design of cross-flow heat exchangers. In: Roetzel, W., Heggs, P.J., Butterworth, D. (Hrsg.) Design and Operation of Heat Exchangers, Proc. Eurotherm Seminar No. 18, Hamburg, Feb. 27−March 1, 1991, S. 125–134. Springer-Verl, Berlin/Heidelberg/New York (1992)

    Google Scholar 

  25. Kandlikar SG, Shah RK (1989) Multipass plate heat exchangers − effectiveness-NTU results and guidelines for selecting pass arrangements. J. Heat Transf. 111:300−313

    Google Scholar 

  26. Bassiouny, M.K.: Experimentelle und theoretische Untersuchungen über Mengenstromverteilung, Druckverlust und Wärmeübergang in Plattenwärmeaustauschern. Fortschr.-Ber. VDI, Reihe 6, Nr. 181. VDI-Verlag, Düsseldorf (1985)

    Google Scholar 

  27. Kandlikar SG, Shah RK (1989) Asymptotic effectiveness-NTU formulas for multipass plate heat exchangers. J. Heat Transf. 111:314−321

    Google Scholar 

  28. Bes, T.: Thermal design of spiral heat exchanger. Int. J. Heat Exch. 2, 59–96 (2001)

    Google Scholar 

  29. Bes, T., Roetzel, W.: Effectiveness of spiral heat exchanger with variable overall heat transfer coefficient. In: Heat Transfer and Renewable Energy Sources, Proc. VII Int. Symp. Heat Transfer and Renewable Energy Sources, Szczecin-Swinoujscie, Sept. 7−9, 1998, S. 415–424 (1998)

    Google Scholar 

  30. Bošnjaković, F., Vilićić, M., Slipćević, B.: Einheitliche Berechnung von Rekuperatoren. VDI-Forschungsheft 432. VDI-Verlag, Düsseldorf (1951)

    Google Scholar 

  31. Domingos, J.D.: Analysis of complex assemblies of heat exchangers. Int. J. Heat Mass Transf. 12, 537–548 (1969)

    Article  Google Scholar 

  32. Kays, W.M., London, A.L.: Compact Heat Exchangers, 2. Aufl. McGraw Hill, New York (1964)

    Google Scholar 

  33. Roetzel, W.: Thermische Auslegung von Wärmeübertragersystemen mit umlaufendem Wärmeträger. BWK. 42(5), 254–258 (1990)

    Google Scholar 

  34. Na Ranong, C.: Stationäres und instationäres Verhalten von zwei gekoppelten Wärmeübertragern mit umlaufenden Fluidstrom. Dissertation, Fakultät Maschinenbau, Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg (2001)

    Google Scholar 

  35. Na Ranong, C., Roetzel, W.: Steady-state and transient behaviour of two heat exchangers coupled by a circulating flow stream. Int. J. Therm. Sci. 41, 1029–1043 (2002)

    Article  Google Scholar 

  36. Na Ranong, C., Hapke, J., Roetzel, W.: Numerical calculation of the transient behaviour of two pure cross-flow heat exchangers coupled by a circulating flow stream. Heat Mass Transf. 46, 1077–1085 (2010)

    Article  Google Scholar 

  37. Butterworth, D.: A Calculation Method for Shell and Tube Heat Exchangers in which the Overall Coefficient Varies Along the Length. NEL Report No. 590, S. 56–71. National Engineering Laboratory East Kilbride, Glasgow (1975)

    Google Scholar 

  38. Spang, B.: Über das thermische Verhalten von Rohrbündelwärmeübertragern mit Segmentumlenkblechen. Fortschr.-Ber. VDI, Reihe 19, Nr. 48. VDI-Verlag, Düsseldorf (1991)

    Google Scholar 

  39. Roetzel, W., Na Ranong, C.: Consideration of maldistribution in heat exchangers using the hyperbolic dispersion model. Chem. Eng. Process 38, 675–681 (1999)

    Google Scholar 

  40. Sahoo, R.K., Roetzel, W.: Hyperbolic axial dispersion model for heat exchangers. Int. J. Heat Mass Transf. 45, 1261–1270 (2002)

    Article  Google Scholar 

  41. Chester, M.: Second sound in solids. Phys. Rev. 131, 2013–2015 (1963)

    Article  Google Scholar 

  42. Roetzel W, Balzereit F (1997) Determination of axial dispersion coefficients in plate heat exchangers using residence time measurements. Rev. Gén. Therm. 36:635−648

    Google Scholar 

  43. Balzereit, F.: Bestimmung von axialen Dispersionskoeffizienten in Wärmeübertragern aus Verweilzeitmessungen. Fortschr.-Ber. VDI, Reihe 19, Nr. 120. VDI-Verlag, Düsseldorf (1999)

    Google Scholar 

  44. Roetzel, W., Balzereit, F.: Axial dispersion in shell-and-tube heat exchangers. Int. J. Therm. Sci. 39, 1028–1038 (2000)

    Article  Google Scholar 

  45. Roetzel, W., NaRanong, C.: Evaluation of residence time measurements on heat exchangers for the determination of dispersive Peclet numbers. Arch. Thermodyn. 35(2), 103–115 (2014). https://doi.org/10.2478/aoter-2014-0016. ISSN (online) 2083-6023

    Article  Google Scholar 

  46. Roetzel, W., NaRanong, C.: Evaluation method of single blow experiment for the determination of heat transfer coefficient and dispersive Peclet number. Arch. Thermodyn. 36(4), 3–24 (2015). https://doi.org/10.1515/aoter-2015-0029

    Article  Google Scholar 

  47. Roetzel, W., NaRanong, C.: Evaluation of temperature oscillation experiment for the determination of heat transfer coefficient and dispersive Peclet number. In: Proceedings of 16th International Conference on Heat Transfer and Renewable Sources of Energy, HTRSE 2016, Szczecin-Miedzyzdroje, Poland, Sept. 10–13, 2016, S. 229–241 (2016). ISBN 978-83-7663-219-3. Extended version: Arch. Thermodyn. 39(1), 91–110 (2018). https://doi.org/10.1515/aoter-2018-0005

  48. Taborek, J.: Evolution of heat exchanger design techniques. Heat Transfer Eng. 1(1), 15–29 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Roetzel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roetzel, W., Spang, B. (2018). Wärmeübertrager: Berechnungsmethoden. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Wärmeübertrager: Berechnungsmethoden
    Published:
    25 September 2018

    DOI: https://doi.org/10.1007/978-3-662-52991-1_5-2

  2. Original

    Wärmeübertrager: Berechnungsmethoden
    Published:
    20 July 2018

    DOI: https://doi.org/10.1007/978-3-662-52991-1_5-1