Skip to main content

Berechnungsmethoden für thermophysikalische Stoffeigenschaften

  • Living reference work entry
  • First Online:
VDI-Wärmeatlas

Part of the book series: Springer Reference Technik ((VDISR))

Zusammenfassung

Dies ist ein Kapitel der 12. Auflage des VDI-Wärmeatlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

Monografien

  1. Bronstein, I.N., Semendjajew, K.A.: Taschenbuch der Mathematik. Verlag Harri Deutsch, Thun/Frankfurt a. M. (2000)

    MATH  Google Scholar 

  2. Gmehling, J., Kolbe, B.: Thermodynamik. Georg Thieme Verlag, Stuttgart/New York (1988)

    Google Scholar 

  3. Jakob, A.: Thermodynamische Grundlagen der Kristallisation und ihre Anwendung in der Modellentwicklung. Dissertation, Universität Oldenburg (1995)

    Google Scholar 

  4. Löffler, H.J.: Thermodynamik. Springer, Berlin/Heidelberg/New York/Tokyo (1969)

    Google Scholar 

  5. Moore, W.J., Hummel, D.O.: Physikalische Chemie. de Gruyter, Berlin/New York (1986)

    Book  Google Scholar 

  6. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)

    Google Scholar 

  7. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids. McGraw-Hill, New York (1987)

    Google Scholar 

  8. Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  9. Nannoolal, Y.: Development and Critical Evaluation of Group Contribution Methods for the Estimation of of Critical Properties, Liquid Vapor Pressure and Liquid Viscosity of Organic Compounds. Thesis, University of Kwazulu-Natal (2006)

    Google Scholar 

  10. Wagner, W.: FLUIDCAL. Software for the Calculation of Thermodynamic and Transport Properties of Several Fluids. Ruhr-Universität, Bochum (2005)

    Google Scholar 

Beitragswerke

  1. Lucas K, Luckas M (2002) Berechnungsmethoden für Stoffeigenschaften. In: Verein Deutscher Ingenieure (Hrsg). VDI-Wärmeatlas, 9, Springer, Berlin/Heidelberg/New York 1–38

    Google Scholar 

Zeitschriftenbeiträge

  1. Ahlers, J., Gmehling, J.: Development of a universal group contribution equation of state. I. Prediction of liquid densities for pure compounds with a volume translated Peng-Robinson equation of state. Fluid Phase Equilibria 191, 177–188 (2001)

    Article  Google Scholar 

  2. Aly, F.A., Lee, L.L.: Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy. Fluid Phase Equilibria 6, 169–179 (1981)

    Article  Google Scholar 

  3. Chung, T.H., Ajlan, M., Lee, L.L., Starling, K.E.: Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27, 671–679 (1988)

    Article  Google Scholar 

  4. Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure compounds. AIChE J. 40(10), 1697–1710 (1994)

    Article  Google Scholar 

  5. Constantinou, L., Gani, R., O’Connell, J.P.: Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilibria 103, 11–22 (1995)

    Article  Google Scholar 

  6. Duncan, J.B., Toor, H.L.: An experimental study of three component gas diffusion. AIChE J. 8(1), 38–41 (1962)

    Article  Google Scholar 

  7. Hankinson, R.W., Thomson, G.H.: A new correlation for saturated densities of liquids and their mixtures. AIChE J. 25, 653–663 (1979)

    Article  Google Scholar 

  8. Hoffmann, W., Florin, F.: Zweckmäßige Darstellung von Dampfdruckkurven. Verfahrenstechnik. Z. VDI-Beiheft. 2, 47–51 (1943)

    Google Scholar 

  9. Kleiber, M.: The trouble with cpliq. Ind. Eng. Chem. Res. 42, 2007–2014 (2003)

    Article  Google Scholar 

  10. Li, P., Ma, P.S., Yi, S.Z., Zhao, Z.G., Cong, L.Z.: A new Corresponding-States Group-Contribution method (CSGC) for estimating vapor pressures of pure compounds. Fluid Phase Equilibria 101, 101–119 (1994)

    Article  Google Scholar 

  11. Lucas, K.: Die Druckabhängigkeit der Viskosität von Flüssigkeiten – eine einfache Abschätzung. Chem.-Ing.-Tech. 53, 959–960 (1981)

    Article  Google Scholar 

  12. Nannoolal, Y., Rarey, J., Ramjugernath, D., Cordes, W.: Estimation of pure component properties, part I: estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 226, 45–63 (2004)

    Article  Google Scholar 

  13. Riedel, L.: Die Berechnung unbekannter thermischer Daten mit Hilfe des erweiterten Korrespondenzprinzips. Kältetechnik 9(5), 127–134 (1957)

    Google Scholar 

  14. Sastri, S.R.S., Rao, K.K.: A new group contribution method for predicting viscosity of organic liquids. Chem. Eng. J. 50, 9–25 (1992)

    Article  Google Scholar 

  15. Sastri, S.R.S., Rao, K.K.: A new method for predicting saturated liquid viscosity at temperatures above the normal boiling point. Fluid Phase Equilibria 175, 311–323 (2000)

    Article  Google Scholar 

  16. Span, R., Wagner, W.: Equations of state for technical applications. Int. J. Thermophys. 24(1), 1–162 (2003)

    Article  Google Scholar 

  17. Stiel, L.I., Thodos, G.: The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions. AIChE J. 10, 26–30 (1964)

    Article  Google Scholar 

  18. Vetere, A.: Predicting the vapor pressures of pure compounds by using the Wagner equation. Fluid Phase Equilibria 62, 1–10 (1991)

    Article  Google Scholar 

  19. Wagner, W.: New vapour pressure measurements for argon and nitrogen and a new method of establishing rational vapour pressure equations. Cryogenics 13, 470–482 (1973)

    Article  Google Scholar 

  20. Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)

    Article  Google Scholar 

  21. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976)

    Article  Google Scholar 

  22. Soave, G.: Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  23. McGarry, J.: Correlation and prediction of the vapor pressures of pure liquids over large pressure ranges. Ind. Eng. Chem. Proc. Des. Dev. 22, 313–322 (1983)

    Article  Google Scholar 

  24. Nannoolal, Y., Rarey, J., Ramjugernath, D.: Estimation of pure component properties, part 3: estimation of the vapor pressure of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 269(1–2), 117–133 (2008)

    Article  Google Scholar 

  25. Jamieson, D.T.: Thermal conductivity of liquids. J. Chem. Eng. Data 24(3), 244–246 (1979)

    Article  Google Scholar 

  26. Fuller, E.N., Ensley, K., Giddings, J.C.: Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections. J. Phys. Chem. 73(11), 3679–3685 (1969)

    Article  Google Scholar 

  27. Velzen D van, Lopes Cardozo R, Langenkamp H (1972) A liquid viscosity-temperature-chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam. 11,1: 20-25

    Google Scholar 

  28. Li, C.C.: Thermal conductivity of liquid mixtures. AIChE J. 22(5), 927–930 (1976)

    Article  Google Scholar 

  29. Tyn, M.T., Calus, W.F.: Diffusion coefficients in dilute binary liquid mixtures. J. Chem. Eng. Data 20(1), 106–109 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kleiber .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kleiber, M., Joh, R. (2018). Berechnungsmethoden für thermophysikalische Stoffeigenschaften. In: Stephan, P., Mewes, D., Kabelac, S., Kind, M., Schaber, K., Wetzel, T. (eds) VDI-Wärmeatlas . Springer Reference Technik (). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52991-1_11-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52991-1_11-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52991-1

  • Online ISBN: 978-3-662-52991-1

  • eBook Packages: Springer Referenz Technik und Informatik

Publish with us

Policies and ethics