Skip to main content

Nanocrystalline Silicon and Solar Cells

  • Living reference work entry
  • First Online:
Handbook of Photovoltaic Silicon

Abstract

Thin-film solar cell technology based on nanocrystalline silicon has made a significant progress since production of the first hydrogenated nanocrystalline silicon (nc-Si:H) solar cell in 1994. Up to day, the highest conversion efficiency of single-junction nc-Si:H thin-film solar cells has reached 11.8%, and the further progress is expected. In this chapter, we aim to outline the progress, trends, and major approaches to enhance the nanocrystalline silicon solar cell technology and achieve considerably higher efficiency numbers. Being composed of the two parts, this chapter in its first part describes the fundamentals of nanocrystalline silicon properties, typical fabrication methods, and technologies for solar cells, as well as recent progress in nc-Si:H fabrications and properties. The second part states the recent advanced technologies for efficiency improvement and provides an overview of the significant achievements, current status, and future prospects of the thin-film solar cells based on nc-Si:H. In particular, the highest reported open-circuit voltage of 608 mV has been demonstrated in a 650-nm-thick single-junction nc-Si:H solar cell by applying amorphous silicon passivation layers at the n/i interface. Besides, the multijunction solar cell technique has significantly contributed to the improvement of the conversion efficiency. In particular, the best triple-junction tandem solar cells reach an initial active-area efficiency of about 16% in the a-Si:H/a-SiGe:H/nc-Si:H structure. Such an impressive success in light management paves the way to application of nanocrystalline silicon for many vital fields such as novel texture structures, window layers, intermediate reflectors for the improvements of photo-current density, and conversation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • J. Bailat, E. Vallat-Sauvain, L. Feitknecht, C. Droz, A. Shah, J. Non-Cryst. Solids 299–302, 1219 (2002)

    Article  Google Scholar 

  • M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon, S. Hanni, M. Bonnet-Eymard, F. Meillaud, C. Ballif, IEEE J. Photovoltaics 4, 1368 (2014)

    Article  Google Scholar 

  • P. Buehlmann, J. Bailat, D. Domine, A. Billet, F. Meillaud, A. Feltrin, C. Ballif, Appl. Phys. Lett. 91, 143505 (2007)

    Article  Google Scholar 

  • P. Chen, P. Chen, M. Hsiao, C. Hsu, C. Tsai, Int. J. Photoenergy 2016, 8172518 (2016)

    Google Scholar 

  • T. Chen, F. Köhler, A. Heidt, R. Carius, F. Finger, Jpn. J. Appl. Phys. 53, 05FM04 (2014)

    Article  Google Scholar 

  • A. Chowdhury, S. Mukhopadhyay, S. Ray, Sol. Energy Mater. Sol. Cells 93, 597 (2009)

    Article  Google Scholar 

  • R. Gordon, J. Proscia, F.B. Ellis, A.E. Delahoy, Solar Energy Mater. 18, 263 (1989)

    Article  Google Scholar 

  • L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, Jpn. J. Appl. Phys. 37, L1116 (1998)

    Article  Google Scholar 

  • S. Hanni, M. Boccard, G. Bugnon, M. Despeisse, J.W. Schuttauf, F.J. Haug, F. Meillaud, C. Ballif, Phys. Status Solidi Appl. Mater. Sci. 212, 840 (2015)

    Article  Google Scholar 

  • M. Heintze, R. Zedlitz, J. Non-Cryst. Solids 198–200, 1038 (1996)

    Article  Google Scholar 

  • A. Hongsingthong, T. Krajangsang, A. Limmanee, K. Sriprapha, J. Sritharathikhun, M. Konagai, Thin Solid Films 537, 291 (2013)

    Article  Google Scholar 

  • C.H. Hsu, Y.S. Lin, Y.S. Cho, S.Y. Lien, P. Han, D.S. Wuu, IEEE J. Quantum Electron. 50, 515 (2014)

    Article  Google Scholar 

  • O. Isabella, A.H.M. Smets, M. Zeman, Sol. Energy Mater. Sol. Cells 129, 82 (2014)

    Article  Google Scholar 

  • S.J. Jones, R. Crucet, M. Izu, in 28th IEEE Photovoltaic Specialists Conference, Anchorage, Alaska, 2000, pp. 134–137

    Google Scholar 

  • T. Kamei, T. Wada, J. Appl. Phys. 96, 2087 (2004)

    Article  Google Scholar 

  • T. Kilper, W. Beyer, G. Bräuer, T. Bronger, R. Carius, M.N. van den Donker, D. Hrunski, A. Lambertz, T. Merdzhanova, A. Mück, B. Rech, W. Reetz, R. Schmitz, U. Zastrow, A. Gordijn, J. Appl. Phys. 105, 074509 (2009)

    Article  Google Scholar 

  • D.Y. Kim, E. Guijt, F.T. Si, R. Santbergen, J. Holovský, O. Isabella, R.A.C.M.M. van Swaaij, M. Zeman, Sol. Energy Mater. Sol. Cells 141, 148 (2015)

    Article  Google Scholar 

  • S. Kirner, S. Neubert, C. Schultz, O. Gabriel, B. Stannowski, B. Rech, R. Schlatmann, Jpn. J. Appl. Phys. 54, 08KB03 (2015)

    Article  Google Scholar 

  • S. Klein, F. Finger, R. Carius, M. Stutzmann, J. Appl. Phys. 98, 024905 (2005)

    Article  Google Scholar 

  • M. Konagai, Jpn. J. Appl. Phys. 50, 30001 (2011)

    Article  Google Scholar 

  • N. Kosku, S. Miyazaki, Thin Solid Films 511–512, 265 (2006)

    Article  Google Scholar 

  • J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. Zhang, X. Geng, Y. Zhao, Sol. Energy Mater. Sol. Cells 114, 9 (2013)

    Article  Google Scholar 

  • Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, F. Finger, Appl. Phys. Lett. 87, 073503 (2005)

    Article  Google Scholar 

  • T. Matsui, M. Kondo, A. Matsuda, in 3rd World Conference on Photovoltaic Energy Conversion, Osaku, 2003, pp. 1548–1551

    Google Scholar 

  • J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, A. Shah, in Proceedings of the 1st IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 1994, pp. 409–412

    Google Scholar 

  • F. Meillaud, A. Feltrin, D. Dominé, P. Buehlmann, M. Python, G. Bugnon, A. Billet, G. Parascandolo, J. Bailat, S. Fay, N. Wyrsch, C. Ballif, A. Shah, Philos. Mag. 89, 2599 (2009)

    Article  Google Scholar 

  • J. Merten, J.M. Asensi, C. Voz, A. Shah, R. Platz, J. Andreu, IEEE Trans. Electron Devices 45, 423 (1998)

    Article  Google Scholar 

  • B.Y. Moon, J.H. Youn, S.H. Won, J. Jang, Sol. Energy Mater. Sol. Cells 69, 139 (2001)

    Article  Google Scholar 

  • E. Moulin, M. Steltenpool, M. Boccard, G. Bugnon, M. Stuckelberger, E. Feuser, B. Niesen, R. Van Erven, J. Sch, F. Haug, C. Ballif, IEEE J. Photovoltaics 4, 1177 (2014)

    Article  Google Scholar 

  • J. Müller, B. Recha, J. Springer, M. Vanecek, Sol. Energy 77, 917 (2004)

    Article  Google Scholar 

  • S.Y. Myong, K. Sriprapha, S. Miyajima, A. Yamad, M. Konagai, Appl. Phys. Lett. 90, 263509 (2007)

    Article  Google Scholar 

  • A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Science 352, aad4424 (2016)

    Article  Google Scholar 

  • M. Python, O. Madani, D. Dominé, F. Meillaud, E. Vallat-Sauvain, C. Ballif, Sol. Energy Mater. Sol. Cells 93, 1714 (2009)

    Article  Google Scholar 

  • J.K. Rath, Sol. Energy Mater. Sol. Cells 76, 431 (2003)

    Article  Google Scholar 

  • H. Sai, K. Saito, M. Kondo, Appl. Phys. Lett. 101, 1 (2012)

    Google Scholar 

  • H. Sai, K. Maejima, T. Matsui, T. Koida, M. Kondo, S. Nakao, Y. Takeuchi, H. Katayama, I. Yoshida, Jpn. J. Appl. Phys. 54, 08KB05 (2015)

    Article  Google Scholar 

  • H. Sai, T. Matsui, K. Matsubara, Appl. Phys. Lett. 109, 1 (2016)

    Google Scholar 

  • S. Schicho, F. Köhler, R. Carius, A. Gordijn, Sol. Energy Mater. Sol. Cells 98, 391 (2012)

    Article  Google Scholar 

  • R.E.I. Schropp, M. Zeman, Amorphous and Microcrystalline Solar Cells: Modeling, Materials, and Device Technology, 1st edn. (Springer, New York, 1998)

    Book  Google Scholar 

  • C.S. Schuster, Diffractive Optics for Thin-Film Silicon Solar Cells, 1st edn. (Springer, Cham, 2017)

    Book  Google Scholar 

  • A. Tamang, H. Sai, V. Jovanov, S.I.H. Bali, K. Matsubara, D. Knipp, Sol. Energy Mater. Sol. Cells 151, 81 (2016)

    Article  Google Scholar 

  • H. Tan, P. Babal, M. Zeman, A.H.M. Smets, Sol. Energy Mater. Sol. Cells 132, 597 (2015)

    Article  Google Scholar 

  • J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  • M.N. Van Den Donker, S. Klein, B. Rech, F. Finger, W.M.M. Kessels, M.C.M. Van De Sanden, Appl. Phys. Lett. 90, 183504 (2007)

    Article  Google Scholar 

  • O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H. Wagner, Sol. Energy Mater. Sol. Cells 62, 97 (2000)

    Article  Google Scholar 

  • D.Y. Wei, Ph.D. thesis, Nanyang Technological University, 2014

    Google Scholar 

  • D.Y. Wei, S.Q. Xiao, S.Y. Huang, C.S. Chan, H.P. Zhou, L.X. Xu, Y.N. Guo, J.W. Chai, S.J. Wang, S. Xu, J. Phys. D. Appl. Phys. 46, 215501 (2013)

    Article  Google Scholar 

  • S. Xu, K.N. Ostrikov, Y. Li, E.L. Tsakadze, I.R. Jones, Phys. Plasmas 8, 2549 (2001)

    Article  Google Scholar 

  • E. Yablanovitch, G.G. Cody, IEEE Trans. Elec. Dev. ED-29, 300 (1982)

    Article  Google Scholar 

  • B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C.S. Jiang, Appl. Phys. Lett. 99, 113512 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyuan Wei .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Wei, D., Xu, S., Levchenko, I. (2017). Nanocrystalline Silicon and Solar Cells. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52735-1_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52735-1_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52735-1

  • Online ISBN: 978-3-662-52735-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics