Skip to main content

Polycrystalline Silicon Thin Film

  • Living reference work entry
  • First Online:
Handbook of Photovoltaic Silicon
  • 293 Accesses

Abstract

By eliminating the costly steps of Si wafer, polycrystalline silicon (poly-Si) thin film solar cells become the very promising candidates for cost-effective photovoltaics in the future. In order to maintain the high efficiency character of crystalline silicon (c-Si) wafer-based solar cells, competitive material qualities and appropriate device structures are required for poly-Si thin film solar cells on inexpensive substrates. Low cost fabrication processes are also demanded from the point of view of industrial production.

In the past few decades, a wide variety of poly-Si thin film solar cell approaches have been investigated to improve device performance and to identify suitable technology to boost poly-Si thin film solar cells towards competitive photovoltaic devices. The efficiencies of poly-Si thin film solar cells increase gradually. However, they are still much lower than that of c-Si solar cells or other compound semiconductor thin film solar cells. More efforts are needed in the future.

This chapter reviews the technological and scientific developments in the field of poly-Si thin films and solar cells. After an introduction, basic knowledge involved in the fabrication of poly-Si thin films is presented in the first part. In the second part, seed layer and transfer techniques for poly-Si thin film solar cells are described. In the third part, suitable light trapping technology is discussed. In the fourth part, material characterization techniques and properties of poly-Si thin films are shown. In the final part, the developing status of poly-Si thin film solar cells is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • K. Alberi, I. Martin, M. Shub, C. Teplin, M. Romero, R. Reedy, E. Iwaniczko, A. Duda, P. Stradins, H. Branz, D. Young, Material quality requirements for efficient epitaxial film silicon solar cells. Appl. Phys. Lett. 96, 073502 (2010)

    Article  Google Scholar 

  • C. Becker, V. Preidel, T. Sontheimer, C. Klimm, E. Rudigier-Voigt, M. Bockmeyer, B. Rech, Direct growth of periodic silicon nanostructures on imprinted glass for photovoltaic and photonic applications. Phys. Status Solidi C 9, 2079 (2012)

    Article  CAS  Google Scholar 

  • C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J. Merkel, P. Plocica, S. Steffens, B. Rech, Polycrystalline silicon thin-film solar cells: Status and perspectives. Sol. Energy Mater. Sol. Cells 119, 112 (2013)

    Article  CAS  Google Scholar 

  • S. Bedell, D. Shahrjerdi, B. Hekmatshoar, K. Fogel, P.A. Lauro, N. Sosa, D. Sadana, Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies. EPJ Photovolt. 2, 141 (2012)

    Article  Google Scholar 

  • D. Bobela, C. Teplin, D. Young, H. Branz, P. Stradins, Epitaxial crystal silicon absorber layers and solar cells grown at 1.8 microns per minute, in The 37th IEEE Photovoltaic Specialists Conference (PVSC37) Seattle, 19 (2011)

    Google Scholar 

  • M.S. Branham, W.C. Hsu, S. Yerci, J. Loomis, S.V. Boriskina, B.R. Hoard, S.E. Han, G. Chen, 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures. Adv. Mater. 27, 2182 (2015)

    Article  CAS  Google Scholar 

  • M. Bruel, B. Aspar, A.-J. Auberton-Hervéa, New silicon on insulator material technology based on hydrogen implantation and wafer bonding. Jpn. J. Appl. Phys. 36, 1636 (1997)

    Article  CAS  Google Scholar 

  • J. Bullock, M. Hettick, J. Geissbühler, A. Ong, T. Allen, C. Sutter-Fella, T. Chen, H. Ota, E. Schaler, S. Wolf, C. Ballif, A. Cuevas, A. Javey, Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat Energy 1, 15031 (2016)

    Article  CAS  Google Scholar 

  • P. Cabarrocas, R. Cariou, M. Labrune, Low temperature plasma deposition of silicon thin films: from amorphous to crystalline. J. Non-Cryst. Solids 358(17), 2000 (2012)

    Article  Google Scholar 

  • R. Cariou, W. Chen, I. Bolanos, J. Maurice, M. Foldyna, V. Depauw, G. Patriarche, A. Gaucher, A. Cattoni, I. Massiot, S. Collin, E. Cadel, P. Pareige, P. Cabarrocas, Ultrathin PECVD epitaxial Si solar cells on glass via low-temperature transfer process. Prog. Photovolt. Res. Appl. 24(8), 1075 (2016)

    Article  CAS  Google Scholar 

  • W. Chen, R. Cariou, M. Foldyna, V. Depauw, C. Trompoukis, E. Drouard, L. Lalouat, A. Harouri, J. Liu, A. Fave, R. Orobtchouk, F. Mandorlo, C. Seassal, I. Massiot, A. Dmitriev, K. Lee, P. Cabarrocas, Nanophotonics-based low-temperature PECVD epitaxial crystalline silicon solar cells. J. Phys. D. Appl. Phys. 49, 125603 (2016)

    Article  Google Scholar 

  • D. Dawson-Elli, C. Williams, J. Couillard, J. Cites, R. Manley, G. Fenger, K. Hirschman, Demonstration of high performance TFTs on silicon-on-glass (SiOG) substrate. ECS Trans. 8(1), 223 (2007)

    Article  CAS  Google Scholar 

  • F. Delachat, F. Antoni, P. Prathap, A. Slaoui, C. Cayron, C. Ducros, Thin film pc-Si by aluminium induced crystallization on metallic substrate. EPJ Photovolt. 4, 45102 (2013)

    Article  Google Scholar 

  • V. Depauw, I. Abdo, R. Boukhicha, R. Cariou, W. Chen, I. Cosme Bolanos, O. Deparis et al., Nanophotonics for ultra-thin crystalline silicon photovoltaics: when photons meet electrons, in 29th European Photovoltaic Solar Energy Conference and Exhibition 3B0.5.5 (2014)

    Google Scholar 

  • D.J. Eaglesham, J. Appl. Phys. 77, 3597 (1995)

    Article  CAS  Google Scholar 

  • D. Eisenhauer, G. Köppel, K. Jäger, D. Chen, O. Shargaieva, P. Sonntag, D. Amkreutz, B. Rech, C. Becker, Smooth anti-reflective three-dimensional textures for liquid phase crystallized silicon thin-film solar cells on glass. Sci. Rep. 7, 2658 (2017). https://doi.org/10.1038/s41598-017-02874-y

    Article  CAS  Google Scholar 

  • A. Gaucher, A. Cattoni, C. Dupuis, W. Chen, R. Cariou, M. Foldyna, L. Lalouat, E. Drouard, C. Seassal, P. Cabarrocas, S. Collin, Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping. Nano Lett. 16(9), 5358 (2016)

    Article  CAS  Google Scholar 

  • I. Gordon, F. Dross, V. Depauw, A. Masolin, Y. Qiu, J. Vaes, D. Van Gestel, J. Poortmans, Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications. Sol. Energy Mater. Sol. Cells 95, S2–S7 (2011)

    Article  CAS  Google Scholar 

  • J. Han, L. Wang, A. Lochtefeld, A. Gerger, H. Li, M. Carroll, Y. Yao, A. Lennon, R. Opila, A. Barnett, Fabrication of large area ultra-thin silicon solar cells, in 29th European Photovoltaic Solar Energy Conference and Exhibition (2014), p. 1502

    Google Scholar 

  • J. He, P. Gao, M. Liao, Y. Xi, Z. Ying, S. Zhou, J. Ye, C. Yi, Realization of 13.6% efficiency on 20μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression. ACS Nano 9, 6522 (2015)

    Article  CAS  Google Scholar 

  • W. Hsu, J. Tong, M. Branham, Y. Huang, S. Yerci, S.V. Boriskina, G. Chen, Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells. Opt. Commun. 377, 52 (2016)

    Article  CAS  Google Scholar 

  • J. Huang, S. Varlamov, J. Dore, J.S. Yun, M.A. Green, Micro-structural defects in polycrystalline silicon thin-film solar cells on glass by solid-phase crystallisation and laser-induced liquid-phase crystallisation. Sol. Energy Mater. Sol. Cells 132, 282 (2015)

    Article  CAS  Google Scholar 

  • P. Kapur, M. Moslehi, A. Deshpande, V. Rana, J. Kramer, S. Seutter, H. Deshazer, S. Coutant, A. Calcaterra, S. Kommera, Y.-S. Su, D. Grupp, S. Tamilmani, D. Dutton, T. Stalcup, T. Du, M. Wingert, A manufacturable, non-plated, non-Ag metallization based 20.44% efficient, 243cm2 area, back contacted solar cell on 40 um thick mono-crystalline silicon, in 28th European Photovoltaic Solar Energy Conference and Exhibition (2013), p. 2228

    Google Scholar 

  • C. Ke, F. Law, P. Widenborg, A. Aberle, I. Peters, Electrical activity of geometrically necessary dislocations in polycrystalline silicon thinfilms prepared by solid phase crystallization. Phys. Status Solidi A211, 2488 (2014)

    Article  Google Scholar 

  • M. Keevers, T. Young, U. Schubert, M. Green, 10% efficient CSG minimoduls, in 22nd European Photovoltaic Solar Energy Conference (2007), p. 1783

    Google Scholar 

  • W. Knaepen, C. Detavernier, R.L. Meirhaeghe, J.J. Sweet, C. Lavoie, In-situ X-ray Diffraction study of metal induced crystallization of amorphous silicon. Thin Solid Films 516, 4946 (2008)

    Article  CAS  Google Scholar 

  • S. Kühnapfel, J. Huang, A. Teal, H. Kampwerth, D. Amkreutz, S. Gall, S. Varlamov, Lifetime analysis of laser crystallized silicon films on glass. J. Appl. Phys. 118, 055304 (2015)

    Article  Google Scholar 

  • S. Kühnapfel, S. Gall, P. Sonntag, N. Schäfer, D. Abou-Ras, Direct correlation of microstructure and device performance of liquid phase crystallized Si thin film solar cells on glass. Phys. Status Solidi RRL 10, 657 (2016)

    Article  Google Scholar 

  • A. Kumar, P.I. Widenborg, G.K. Dalapati, C. Ke, G.S. Subramanian, A. Aberle, Controlling stress in large-grained solid phase crystallized n-type poly-Si thin films to improve crystal quality. Cryst. Growth Des. 15, 1067 (2015)

    Article  CAS  Google Scholar 

  • L. Liu, K. Peng, Y. Hu, X. Wu, S. Lee, Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution. Adv. Mater. 26, 1410 (2014)

    Article  CAS  Google Scholar 

  • M.S. Mason, C.M. Chen, H.A. Atwater, Hot-wire chemical vapor deposition for epitaxial silicon growth on large-grained polycrystalline silicon templates. Thin Solid Films 430, 54 (2003)

    Article  CAS  Google Scholar 

  • A. Mellor, H. Hauser, C. Wellens, J. Benick, et al., Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation. Opt. Express 21, A295 (2013)

    Article  CAS  Google Scholar 

  • M. Moreno, G. Patriarche, P. Roca i Cabarrocas, Fine tuning of the interface in high-quality epitaxial silicon films deposited by plasma-enhanced chemical vapor deposition at 200 °C. J. Mater. Res. 28, 1626 (2013)

    Article  CAS  Google Scholar 

  • M. Morenoa, P. Cabarrocas, Ultra-thin crystalline silicon films produced by plasma assisted epitaxial growth on silicon wafers and their transfer to foreign substrates. EPJ Photovolt. 1, 10301 (2010)

    Article  Google Scholar 

  • M. Nerding, L. Oberbeck, T.A. Wagner, R.B. Bergmann, H.P. Strunk, Single to polycrystalline transition in silicon growth by ion-assisted deposition at low temperatures. J. Appl. Phys. 93, 2570 (2003)

    Article  CAS  Google Scholar 

  • J. Oh, H.C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnol. 7(11), 743 (2012)

    Article  CAS  Google Scholar 

  • J.H. Petermann, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, R. Brendel, 19%-efficient and 43 mm-thick crystalline Si solar cell from layer transfer using porous silicon. Prog. Photovolt. Res. Appl. 20, 1 (2012)

    Article  CAS  Google Scholar 

  • N. Preissler, D. Amkreutz, P. Sonntag, M. Trahms, R. Schlatmann, B. Rech, Interface engineering for liquid-phase crystallized-silicon solar cells on glass. Sol. RRL 1, 1700015 (2017a)

    Article  Google Scholar 

  • N. Preissler, J. Töfflinger, O. Gabriel, P. Sonntag, D. Amkreutz, B. Stannowski, B. Rech, R. Schlatmann, Passivation at the interface between liquid-phase crystallized silicon and silicon oxynitride in thinfilm solar cells. Prog. Photovolt. Res. Appl. 25, 515 (2017b)

    Article  CAS  Google Scholar 

  • Y. Qiu, O. Kunz, A. Fejfar, M. Ledinský, B. Chan, I. Gordon, D. Gestel, S. Venkatachalm, R. Egan, On the effects of hydrogenation of thin film polycrystalline silicon: a key factor to improve heterojunction solar cells. Sol. Energy Mater. Sol. Cells 122, 31 (2014)

    Article  CAS  Google Scholar 

  • H. Radhakrishnan, R. Martini, V. Depauw, K. Van Nieuwenhuysen, M. Debucquoy, J. Govaerts, I. Gordon, R. Mertens, J. Poortmans, Improving the quality of epitaxial foils produced using a porous silicon-based layer transfer process for high-efficiency thin-film crystalline silicon solar cells. EPJ Photovolt 4, 70 (2014)

    Article  Google Scholar 

  • H. S. Radhakrishnan, M. Xu, T. Bearda, M. Filipič, K. Van Nieuwenhuysen, V. Depauw, I. Gordon, M. Debucquoy, J. Szlufcik, J. Poortman, Heterojunction IBC solar cells on thin (< 50 μm) epitaxial Si foils produced from Kerfless layer transfer process, in 33rd European Photovoltaic Solar Energy Conference and Exhibition (2017), p. 740

    Google Scholar 

  • B. Rau, I. Sieber, B. Selle, S. Brehme, U. Knipper, S. Gall, et al., Homo-epitaxial Si absorber layers grown by low-temperature ECRCVD. Thin Solid Films 644, 451 (2004)

    Google Scholar 

  • T. Sontheimer, E. Rudigier-Voigt, M. Bockmeyer, C. Klimm, P. Schubert-Bischoff, C. Becker, B. Rech, Large-area fabrication of equidistant free-standing Si crystals on nanoimprinted glass. Phys. Status Solidi RRL 5, 376 (2011)

    Google Scholar 

  • M. Schwarzschild, Crystalline thin film grows on amorphous base. Phys. Today 32(8), 21 (1979)

    Article  Google Scholar 

  • P. Sonntag, N. Preissler, M. Bokalič, M. Trahms, J. Haschke, R. Schlatmann, M. Topič, B. Rech, D. Amkreutz, Silicon solar cells on glass with power conversion efficiency above 13% at thickness below 15 micrometer. Sci. Rep. 7, 873 (2017)

    Article  Google Scholar 

  • C. Teplin, D.H. Levi, E. Iwaniczko, K.M. Jones, J.D. Perkins, H.M. Branz, Monitoring and modeling silicon homoepitaxy breakdown with real-time spectroscopic ellipsometry. J. Appl. Phys. 97, 103536 (2005)

    Article  Google Scholar 

  • Q. Wang, C.W. Teplin, P. Stradins, B. To, K.M. Jones, H.M. Branz, Recent advances in hot-wire CVD R&D at NREL: from 18% silicon heterojunction cells to silicon epitaxy at glass-compatible temperatures. J. Appl. Phys. 100, 93520 (2006)

    Article  Google Scholar 

  • K. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616 (2012)

    Article  CAS  Google Scholar 

  • T. Watahiki, A. Yamada, M. Konagai, New approach to low-temperature Si epitaxy by using hot wire cell method. J. Cryst. Growth 209, 335 (2000)

    Article  CAS  Google Scholar 

  • D. Young, S. Grover, C. Teplin, P. Stradins, V. LaSalvia, T. Chuang, J. Greg, C. Howard, M. Branz, Characterization of epitaxial film silicon solar cells grown on seeded display glass, in The 2012 I.E. Photovoltaic Specialists Conference 3 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhen Liu .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liu, F., Zhou, Y. (2019). Polycrystalline Silicon Thin Film. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52735-1_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52735-1_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52735-1

  • Online ISBN: 978-3-662-52735-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics