Skip to main content

Growth of Crystalline Silicon for Solar Cells: Noncontact Crucible Method

  • Living reference work entry
  • First Online:
Handbook of Photovoltaic Silicon
  • 290 Accesses

Abstract

The noncontact crucible (NOC) method will have a potential to be as an advanced cast method. It is effective to obtain Si single ingots with the large diameter and volume using the cast furnace and solar cells with high yield of high conversion efficiency. Several novel characteristics of this method are explained on the view point of the existence of a large low-temperature region in a Si melt which is the key point to realize its enclosing potential as follows. The largest diameter ratio of 0.9 was obtained by expanding the low-temperature region in the Si melt. For p-type solar cells, the highest of 19.14% and the average conversion efficiencies of 19.0% were obtained for the NOC wafers, using the same solar cell structure and process to obtain the conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafers. The present method realized solar cells with the conversion efficiency and yield as high as those of the CZ solar cells using the cast furnace for the first time. The latest information about the growth of Si ingots using the NOC method is explanatorily shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • D.F. Bliss, Evolution and application of the Kyropoulos crystal growth method, in: 50 Years Progress in Crystal Growth: A Reprint Collection, ed. by R.S. Feigelson (Elsevier, Amsterdam, 2004), pp. 29–33

    Google Scholar 

  • W.N. Borle, S. Tata, S.K. Varma, J. Cryst. Growth 8, 223 (1971)

    Article  Google Scholar 

  • S. Castellanos, M. Kivambe, M.A. Jensen, D.M. Powell, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, Science Direct, Energy Procedia 92, 779 (2016)

    Article  Google Scholar 

  • G. Coletti, P. Manshanden, S. Bernardini, P.C.P. Bronsveld, A. Gutjahr, Z. Hu, G. Li, Sol. Energy Mater. Sol. Cells 130, 647 (2014)

    Article  Google Scholar 

  • J. Czochralski, Z. Phys. Chem. 92, 219 (1917)

    Google Scholar 

  • W. Dash, C. J. Appl. Phys. 30, 459 (1959)

    Article  Google Scholar 

  • S.E. Demina, E.N. Bystrova, M.A. Lukanina, V.M. Mamedov, V.S. Yuferev, E.V. Eskov, M.V. Nikolenko, V.S. Postolov, V.V. Kalaev, Opt. Mater. 30, 62 (2007)

    Article  Google Scholar 

  • K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Acta Mater. 56, 2663 (2008)

    Article  Google Scholar 

  • A. Herguth, G. Schubert, M. Kaes, G. Hahn, in 21st EUPVSEC, p. 530, 2006

    Google Scholar 

  • M.A. Jensen, V. LaSalvia, A.E. Morishige, K. Nakajima, Y. Veschetti, F. Jay, A. Jouini, A. Youssef, P. Stradins, T. Buonassisi, in Silicon PV, 2016

    Google Scholar 

  • M. Kivambe, D.M. Powell, S. Castellanos, M.A. Jensen, A.E. Morishige, K. Nakajima, K. Morishita, R. Murai, T. Buonassisi, J. Cryst. Growth 407, 31 (2014)

    Article  Google Scholar 

  • E. Kuroda, S. Matsubara, T. Saitoh, Jpn. J. Appl. Phys. 19, L361 (1980a)

    Article  Google Scholar 

  • E. Kuroda, S. Matsubara, T. Saitoh, Jpn. J. Appl. Phys. 19, L361 (1980b)

    Article  Google Scholar 

  • C.W. Lan, in 6th World Conference on Photovoltaic Energy Conversion, 2014

    Google Scholar 

  • C.W. Lan, C. Hsu, K. Nakajima, Handbook of Crystal Growth, Bulk Crystal Growth: Basic Techniques Vol. II, Part a (Elsevier, Amsterdam, 2015), pp. 373–411

    Book  Google Scholar 

  • D. Macdonald, A. Cuevas, Sol. Energy Mater. Sol. Cells 65, 509 (2001)

    Article  Google Scholar 

  • W. Miller, C. Frank-Rotsch, M. Czupalla, P. Rudolph, Cryst. Res. Technol. 47, 285 (2012)

    Article  Google Scholar 

  • A. Muiznieks, A. Rudevics, K. Lacis, H. Riemann, A. Lüdge, F.W. Schulze, B. Nacke, in Proceedings of the International Scientific Colloquium, Modelling for Material, 2006, p. 89

    Google Scholar 

  • K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, N. Usami, J. Cryst. Growth 344, 6 (2012a)

    Article  Google Scholar 

  • K. Nakajima, K. Morishita, R. Murai, K. Kutsukake, J. Cryst. Growth 355, 38 (2012b)

    Article  Google Scholar 

  • K. Nakajima, R. Murai, K. Morishita, K. Kutsukake, J. Cryst. Growth 372, 121 (2013)

    Article  Google Scholar 

  • K. Nakajima, R. Murai, K. Morishita, Jpn. J. Appl. Phys. 53, 025501–025501 (2014a)

    Article  Google Scholar 

  • K. Nakajima, K. Morishita, R. Murai, N. Usami, J. Cryst. Growth 389, 112 (2014b)

    Article  Google Scholar 

  • K. Nakajima, K. Morishita, R. Murai, J. Cryst. Growth 405, 44 (2014c)

    Article  Google Scholar 

  • K. Nakajima, R. Murai, S. Ono, K. Morishita, M. Kivambe, D.M. Powell, T. Buonassisi, Jpn. J. Appl. Phys. 54, 015504–015501 (2015)

    Article  Google Scholar 

  • K. Nakajima, S. Ono, R. Murai, Y. Kaneko, J. Electron. Mater. 45, 2837 (2016a)

    Article  Google Scholar 

  • K. Nakajima, S. Ono, Y. Kaneko, R. Murai, K. Shirasawa, T. Fukuda, H. Takato, in Proceedings of the 43th IEEE Photovoltaic Specialists Conference, 2016b, pp. 68–72

    Google Scholar 

  • K. Nakajima, S. Ono, Y. Kaneko, R. Mura, K. Shirasawa, T. Fukuda, H. Takato, S. Castellanos, M.A. Jensen, A. Youssef, T. Buonassisi, F. Jay, Y. Veschetti, A. Jouini, J. Cryst. Growth 468, 705 (2017)

    Article  Google Scholar 

  • J. Nelson, Physics of Solar Cells, Chapter 7 (Imperial College Press, London, 2003)

    Google Scholar 

  • G. Ratnieks, A. Muiznieks, A. Mühlbauer, J. Cryst. Growth 255, 227 (2003)

    Article  Google Scholar 

  • P.S. Ravishankar, Sol. Energy Mater. 12, 361 (1985)

    Article  Google Scholar 

  • P.J. Rudolph, Jpn. Assoc. Cryst. Growth 39, 8 (2012)

    Google Scholar 

  • P. Rudolph, M. Czupalla, B. Lux, F. Kirscht, C. Frank-Rotsch, W. Miller, M. Albrecht, J. Cryst. Growth 318, 249 (2011)

    Article  Google Scholar 

  • F. Secco d’Aragona, J. Electrochem. Soc. 119, 948 (1972)

    Article  Google Scholar 

  • R.A. Sinton, A. Cuevas, M. Stuckings, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, 1996, p. 457

    Google Scholar 

  • W. Zulehner, J. Cryst. Growth 65, 189 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Nakajima .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Nakajima, K. (2017). Growth of Crystalline Silicon for Solar Cells: Noncontact Crucible Method. In: Yang, D. (eds) Handbook of Photovoltaic Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52735-1_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52735-1_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52735-1

  • Online ISBN: 978-3-662-52735-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics