Skip to main content

Sorption Thermal Energy Storage

  • Reference work entry
  • First Online:
Handbook of Energy Systems in Green Buildings

Abstract

Sorption thermal energy storage (STES) technology is a promising thermal energy storage method which many scholars hold avid interest on recently as it has charming advantages of high energy storage density and negligible heat loss during storage periods. This system is suitable to supply space heating and hot water for buildings by storing solar energy or other low-grade heat. The working cycle of this system is divided into two modes, which are listed as follows. During the charging process, the input heat is stored in the form of chemical potential by breaking the binders between the sorbate and the sorbent. Then, the sorbate and the sorbent are kept separated during the sorption period. The discharging process is motivated by the connection between the sorbent and the sorbate, which release sorption heat for heating supply when needed. Generally, the sorption materials are composed of solid adsorbent, liquid absorbent, chemical reactor, and composite sorbents. The STES system is classified as closed system and open system according to its configuration. Besides, it can also be divided into long-term storage system and short-term storage system based on the designed storage time span. Thermochemical characterizations of sorption materials, system design, and proposal of system cycles serve as the main aspects of the investigation of STES technology.

In this chapter, the high-end STES technology of solar energy storage, which is applied in buildings, is concluded, including the sorption energy storage mechanics, sorption materials, system design, as well as typical prototypes and projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henning HM (2007) Solar assisted air conditioning of buildings – an overview. Appl Therm Eng 27(10):1734–1749

    Article  Google Scholar 

  2. Building Energy Conservation Research Center, Tsinghua University (2015) Annual report on China building energy efficiency: China Architecture & Building Press

    Google Scholar 

  3. Kato Y (2007) Chemical energy conversion technologies for efficient energy use. Springer, Dordrecht

    Book  Google Scholar 

  4. Oró E, de Gracia A, Castell A, Farid MM, Cabeza LF (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533

    Article  Google Scholar 

  5. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13(2):318–345

    Article  Google Scholar 

  6. Abedin AH, Rosen MA (2011) A critical review of thermochemical energy storage systems. Open Renewable Energy Journal 4(4):42–46

    Article  Google Scholar 

  7. IUPAC (1972) Manual of symbols and terminology for physico-chemical quantities and units, appendix II, part I, definations, terminology and symbols in colloid and surface chemistry. Pure Appl Chem 31:579

    Google Scholar 

  8. Pierotti R, Rouquerol J (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  Google Scholar 

  9. Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust Sci 39(5):489–514

    Article  Google Scholar 

  10. Aristov YI, Restuccia G, Cacciola G, Parmon VN (2002) A family of new working materials for solid sorption air conditioning systems. Appl Therm Eng 22(2):191–204

    Article  Google Scholar 

  11. Aristov YI (2007) New family of solid sorbents for adsorptive cooling: material scientist approach. J Eng Thermophys 16(2):63–72

    Article  Google Scholar 

  12. Wang LW, Wang RZ, Oliveira RG (2009) A review on adsorption working pairs for refrigeration. Renew Sust Energ Rev 13(3):518–534

    Article  Google Scholar 

  13. Cabeza LF (2016) Solé A. Barreneche C. Review on sorption materials and technologies for heat pumps and thermal energy storage, Renewable Energy

    Google Scholar 

  14. Schmidt T, Mangold D, Müller-Steinhagen H (2004) Central solar heating plants with seasonal storage in Germany. Sol Energy 76(1–3):165–174

    Article  Google Scholar 

  15. Li G, Hwang Y, Radermacher R (2012) Review of cold storage materials for air conditioning application. Int J Refrig 35(8):2053–2077

    Article  Google Scholar 

  16. Aydin D, Casey SP, Riffat S (2015) The latest advancements on thermochemical heat storage systems. Renew Sust Energ Rev 41:356–367

    Article  Google Scholar 

  17. Hauer A (2007) Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems. Adsorption 13(3–4):399–405

    Article  Google Scholar 

  18. N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sust Energ Rev 13(9):2385–2396

    Article  Google Scholar 

  19. Wongsuwan W, Kumar S, Neveu P, Meunier F (2001) A review of chemical heat pump technology and applications. Appl Therm Eng 21(15):1489–1519

    Article  Google Scholar 

  20. Weber R, Dorer V (2008) Long-term heat storage with NaOH. Vacuum 82(7):708–716

    Article  Google Scholar 

  21. Aristov YI (2013) Challenging offers of material science for adsorption heat transformation: a review. Appl Therm Eng 50(2):1610–1618

    Article  Google Scholar 

  22. Aristov YI (2007) Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties. Journal of Chemical Engineering of Japan 40(13):1242–1251

    Article  Google Scholar 

  23. Aristov YI, Sapienza A, Ovoshchnikov DS, Freni A, Restuccia G (2012) Reallocation of adsorption and desorption times for optimisation of cooling cycles. Int J Refrig 35(3):525–531

    Article  Google Scholar 

  24. Aristov YI (2009) Optimal adsorbent for adsorptive heat transformers: dynamic considerations. Int J Refrig 32(4):675–686

    Article  Google Scholar 

  25. Aristov YI, Glaznev IS, Girnik IS (2012) Optimization of adsorption dynamics in adsorptive chillers: loose grains configuration. Energy 46(1):484–492

    Article  Google Scholar 

  26. Yu N, Wang RZ, Lu ZS, Wang LW (2015) Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage. Int J Heat Mass Transf 84:660–670

    Article  Google Scholar 

  27. Hongois S, Kuznik F, Stevens P, Roux JJ (2011) Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage. Sol Energy Mater Sol Cells 95(7):1831–1837

    Article  Google Scholar 

  28. IUPAC (1985) Commission on colloid and surface chemistry including catalysis. Pure Appl Chem 57:603–19

    Google Scholar 

  29. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319

    Article  Google Scholar 

  30. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380

    Article  Google Scholar 

  31. Parr RG (1983) Density functional theory. Annu Rev Phys Chem 34(1):631–656

    Article  Google Scholar 

  32. Zheng X, Ge TS, Jiang Y, Wang RZ (2015) Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger. Int J Refrig 51:24–32

    Article  Google Scholar 

  33. Zheng X, Wang LW, Wang RZ, Ge TS, Ishugah TF (2014) Thermal conductivity, pore structure and adsorption performance of compact composite silica gel. Int J Heat Mass Transf 68:435–443

    Article  Google Scholar 

  34. Zhang YN, Wang RZ, Li TX, Zhao YJ (2016) Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage. Energies 9(10):854

    Article  Google Scholar 

  35. Yu N, Wang RZ, Lu ZS, Wang LW (2014) Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage. Chem Eng Sci 111:73–84

    Article  Google Scholar 

  36. Zhang YN, Wang RZ, Zhao YJ, Li TX, Riffat SB, Wajid NM (2016) Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage. Energy 115:120–128

    Article  Google Scholar 

  37. N’Tsoukpoe KE, Schmidt T, Rammelberg HU, Watts BA, Ruck WKL (2014) A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage. Appl Energy 124:1–16

    Article  Google Scholar 

  38. Gordeeva L, Grekova A, Krieger T, Aristov Y (2013) Composites “binary salts in porous matrix” for adsorption heat transformation. Appl Therm Eng 50(2):1633–1638

    Article  Google Scholar 

  39. Zhao YJ, Wang LW, Wang RZ, Ma KQ, Jiang L (2013) Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application. Int J Heat Mass Transf 67:867–876

    Article  Google Scholar 

  40. Yu N, Wang RZ, Wang LW (2015) Theoretical and experimental investigation of a closed sorption thermal storage prototype using LiCl/water. Energy 93:1523–1534

    Article  Google Scholar 

  41. Wang RZ, Oliveira RG (2006) Adsorption refrigeration—an efficient way to make good use of waste heat and solar energy. Prog Energy Combust Sci 32(4):424–458

    Article  Google Scholar 

  42. Deng J, Wang RZ, Han GY (2011) A review of thermally activated cooling technologies for combined cooling, heating and power systems. Prog Energy Combust Sci 37(2):172–203

    Article  Google Scholar 

  43. Gordeeva LG, Aristov YI (2012) Composites 'salt inside porous matrix' for adsorption heat transformation: a current state-of-the-art and new trends. International Journal of Low-Carbon Technologies 7(4):288–302

    Article  Google Scholar 

  44. Zondag HA, Essen VMV, Schuitema R, Bleijendaal LPJ, Kalbasenka A, Helden WGJV et al (2009) Engineering assessment of reactor designs for thermochemicalstorage of solar heat. In: Proceedings of the 11th international conference onthermal energy storage (Effstock 2009), Stockholm

    Google Scholar 

  45. Zondag HA, Kalbasenka A, Essen MV, Bleijendaal L, Schuitema R, Helden WV et al (2008) First studies in reactor concepts for thermochemical storage. In: Proceedings of the 1st international conference on solar heating, cooling and buildings (Eurosun 2008), Lisbon

    Google Scholar 

  46. Zhao YJ, Wang RZ, Zhang YN, Yu N (2016) Development of SrBr<inf>2</inf> composite sorbents for a sorption thermal energy storage system to store low-temperature heat. Energy 115:129–139

    Article  Google Scholar 

  47. Zhao YJ, Wang RZ, Li TX, Nomura Y (2016) Investigation of a 10kWh sorption heat storage device for effective utilization of low-grade thermal energy. Energy 113:739–747

    Article  Google Scholar 

  48. Michel B, Mazet N, Mauran S, Stitou D, Xu J (2012) Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed. Energy 47(1):553–563

    Article  Google Scholar 

  49. Boer R, Haije WG, Veldhuis JB, et al (2004) Solid-sorption cooling with integrated thermal storage: the SWEAT prototype. In: 3rd international heat powered cycles conference (HPC 2004), Larnaca

    Google Scholar 

  50. Mauran S, Lahmidi H, Goetz V (2008) Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW h by a solid/gas reaction. Sol Energy 82(7):623–636

    Article  Google Scholar 

  51. Hauer A (2007) Adsorption systems for TES – design and demonstration projects. In: Paksoy HÖ (ed) Thermal energy storage for sustainable energy consumption: fundamentals, case studies and design. Springer Netherlands, Dordrecht, pp 409–427

    Google Scholar 

  52. Hauer A(2002) Thermal energy storage with zeolite for heating and cooling applications. In: Proceedings of ISHPC 2002-International Sorption Heat Pump Conference. Shanghai, China; 2002.

    Google Scholar 

  53. Hauer A (2007) Adsorption systems for tes—design and demonstration projects. Springer, Dordrecht

    Book  Google Scholar 

  54. Liu H, Nagano K, Sugiyama D, Togawa J, Nakamura M (2013) Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat. Int J Heat Mass Transf 65:471–480

    Article  Google Scholar 

  55. Dunsford FT (1951) Improvements in absorption refrigerating apparatus. GB Patent 17:672

    Google Scholar 

  56. Jaehnig D, Hausner R, Wagner W, Isaksson C (2006) Thermo-chemical storage for solar space heating in a single-family house

    Google Scholar 

  57. Narayanan S, Li X, Yang S, Kim H, Umans A, McKay IS et al (2015) Thermal battery for portable climate control. Appl Energy 149:104–116

    Article  Google Scholar 

  58. Li TX, Wang RZ, Kiplagat JK, Kang Y (2013) Performance analysis of an integrated energy storage and energy upgrade thermochemical solid-gas sorption system for seasonal storage of solar thermal energy. Energy 50(1):454–467

    Article  Google Scholar 

  59. Jiang L, Zhu FQ, Wang LW, Liu CZ, Wang RZ (2016) Experimental investigation on a MnCl<inf>2</inf>−CaCl<inf>2</inf>−NH<inf>3</inf> thermal energy storage system. Renew Energy 91:130–136

    Article  Google Scholar 

  60. Iammak K, Wongsuwan W, Kiatsiriroj T. Investigation of modular chemical energy storage performance. Conference investigation of modular chemical energy storage performance

    Google Scholar 

  61. Fopah-Lele A, Rohde C, Neumann K, Tietjen T, Rönnebeck T, N'Tsoukpoe KE et al (2016) Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger. Energy 114:225–238

    Article  Google Scholar 

  62. Aydin D, Casey SP, Chen X, Riffat S (2016) Novel “open-sorption pipe” reactor for solar thermal energy storage. Energy Convers Manag 121:321–334

    Article  Google Scholar 

  63. Zettl B, Englmair G, Steinmaurer G (2014) Development of a revolving drum reactor for open-sorption heat storage processes. Appl Therm Eng 70(1):42–49

    Article  Google Scholar 

  64. Kerskes H, Mette B, Bertsch F, Asenbeck S, Drück H (2012) Chemical energy storage using reversible solid/gas-reactions (CWS) – results of the research project. Energy Procedia 30:294–304

    Article  Google Scholar 

  65. Said SAM, Spindler K, El-Shaarawi MA, Siddiqui MU, Schmid F, Bierling B et al (2016) Design, construction and operation of a solar powered ammonia–water absorption refrigeration system in Saudi Arabia. Int J Refrig 62:222–231

    Article  Google Scholar 

  66. Lourdudoss S, Stymne H (1987) An energy storing absorption heat pump process. Int J Energy Res 11(11):263–274

    Article  Google Scholar 

  67. Bales C (2005) Nordlander S. TCA Evaluation, Lab Measurements, Modelling and System Simulations. Centrum för sole

    Google Scholar 

  68. N’Tsoukpoe KE, Pierrès NL, Luo L (2012) Experimentation of a LiBr-H2O absorption process for long term solar thermal storage ☆. Energy Procedia 30(1):331–341

    Article  Google Scholar 

  69. Quinnell JA, Davidson JH (2012) Mass transfer during sensible charging of a hybrid absorption/sensible storage tank. Energy Procedia 30:353–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruzhu Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, Y.N., Wang, R., Li, T.X. (2018). Sorption Thermal Energy Storage. In: Wang, R., Zhai, X. (eds) Handbook of Energy Systems in Green Buildings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49120-1_45

Download citation

Publish with us

Policies and ethics