Skip to main content

Thermally Activated Refrigeration Technologies

  • Reference work entry
  • First Online:

Abstract

The current energy generation and utilization patterns can directly lead to considerable wasted energy either at medium or high availabilities. For example, power plants utilize the high-grade portion of fossil-derived energy and reject a large amount of medium-grade thermal energy. Meanwhile, these fossil fuels are also used more ubiquitously in residential water heaters, in which almost all of the high-grade thermal availability is wasted, with the water being heated to a relatively low 60 °C. With energy consumption having been accordingly increased, energy conservation becomes increasingly essential. Vapor compression refrigeration technology has dominated in refrigeration field because of its simple in structure and satisfactory performance, while vapor compression refrigeration consumes power and its working fluids (CFCs, HCFC, HFC) usually have high ODP or GWP. Compared to compression refrigeration, thermally activated refrigeration technologies can utilize low-grade heat, such as solar energy heat and waste heat from the production process. Furthermore, it can use natural refrigerants, such as H2O and NH3. As an important way of energy conservation, thermally activated refrigeration technologies have attracted more attention in recent years. A detailed analysis is made on the thermally activated refrigeration technologies in this chapter, including vapor absorption refrigeration, adsorption refrigeration, and vapor ejector expansion refrigeration. Specifically, the working principles of various refrigeration cycles, the development and classification, research interests as well as the advantages and disadvantages of these refrigeration cycles in recycling low-grade heat are talked about.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Little AB, Garimella S (2009) Comparative assessment of alternative cycles for waste heat recovery and upgrade. Energy 36(7):4492–4504

    Article  Google Scholar 

  2. Erickson DC (2007) Extending the boundaries of ammonia absorption chillers. Am Soc Heat Refrigerat Air Cond Eng 49(4):32–35

    MathSciNet  Google Scholar 

  3. Iversen SB et al (1997) Characterization of microporous membranes for use in membrane contactors. J Membr Sci 130(1–2):205–217

    Article  Google Scholar 

  4. Asfand F, Bourouis M (2015) A review of membrane contactors applied in absorption refrigeration systems. Renew Sustain Energy Rev 45:173–191

    Article  Google Scholar 

  5. Perez-Blanco H (1984) Absorption heat pump performance for different types of solutions. Int J Refrig 7(2):115–122

    Article  Google Scholar 

  6. Fong KF et al (2011) Solar hybrid cooling system for high-tech offices in subtropical climate – radiant cooling by absorption refrigeration and desiccant dehumidification. Energy Conv Manag 52(8–9):2883–2894

    Article  Google Scholar 

  7. Kong X (2011) Combined cooling heat and power. National Defence Industry Press, Beijing, p 240

    Google Scholar 

  8. Wang SG, Wang RZ (2005) Recent developments of refrigeration technology in fishing vessels. Renew Energy 30(4):589–600

    Article  Google Scholar 

  9. Fernández-Seara J, Vales A, Vázquez M (1998) Heat recovery system to power an onboard NH 3 -H 2 O absorption refrigeration plant in trawler chiller fishing vessels. Appl Therm Eng 18(12):1189–1205

    Article  Google Scholar 

  10. Salmi W et al (2017) Using waste heat of ship as energy source for an absorption refrigeration system. Appl Therm Eng

    Article  Google Scholar 

  11. Wang DC et al (2010) A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renew Sustain Energy Rev 14(1):344–353

    Article  Google Scholar 

  12. Wang LW, Wang RZ, Oliveira RG (2009) A review on adsorption working pairs for refrigeration. Renew Sustain Energy Rev 13(3):518–534

    Article  Google Scholar 

  13. Ullah KR et al (2013) A review of solar thermal refrigeration and cooling methods. Renew Sustain Energy Rev 24(10):499–513

    Article  Google Scholar 

  14. Askalany AA et al (2013) An overview on adsorption pairs for cooling. Renew Sustain Energy Rev 19(1):565–572

    Article  Google Scholar 

  15. Ron M (1984) A hydrogen heat pump as a bus air conditioner. J Less Common Metal 104(2):259–278

    Article  Google Scholar 

  16. Saha BB et al (2007) Study on an activated carbon fiber–ethanol adsorption chiller: part I – system description and modelling. Int J Refrig 30(1):86–95

    Article  MathSciNet  Google Scholar 

  17. Oosumi Y (1991) The characteristics and application of metal hydrides. Publishing House of Chemical Industry, Beijing

    Google Scholar 

  18. T, K (1991) Metal oxides and their catalysis. Publishing House of Chemical Industry, China

    Google Scholar 

  19. Kato Y et al (2001) Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration. Appl Therm Eng 21(10):1067–1081

    Article  Google Scholar 

  20. Kato Y, Sasaki Y, Yoshizawa Y (2005) Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system. Energy 30(11–12):2144–2155

    Article  Google Scholar 

  21. Wang D et al (2014) Progress in silica gel–water adsorption refrigeration technology. Renew Sustain Energy Rev 30(6):85–104

    Article  Google Scholar 

  22. Chang WS, Wang CC, Shieh CC (2007) Experimental study of a solid adsorption cooling system using flat-tube heat exchangers as adsorption bed. Appl Therm Eng 27(13):2195–2199

    Article  Google Scholar 

  23. Boelman EC, Saha BB, Kashiwagi T (1995) Computer simulation of a silica gel-water adsorption refrigeration cycle – the influence of operating conditions on cooling output and COP. ASHRAE Trans 101:358–366

    Google Scholar 

  24. Green adsorption chiller. Available from: http://www.greenchiller.biz/homeofgreenchiller.html

  25. Liu YL, Wang RZ, Xia ZZ (2005) Experimental study on a continuous adsorption water chiller with novel design. Int J Refrig 28(2):218–230

    Article  Google Scholar 

  26. Núñez T, Mittelbach W, Henning HM (2007) Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications. Appl Therm Eng 27(13):2205–2212

    Article  Google Scholar 

  27. Wang DC et al (2005) Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction. Int J Refrig 28(7):1073–1083

    Article  Google Scholar 

  28. Wang DC et al (2005) Study of a novel silica gel–water adsorption chiller. Part II. Experimental study. Int J Refrig 28(7):1084–1091

    Article  Google Scholar 

  29. Wang DC et al (2007) Experimental research on novel adsorption chiller driven by low grade heat source. Energy Conv Manag 48(8):2375–2381

    Article  Google Scholar 

  30. Wang RZ, Keletigui D, Wang DC (2006) Research on a compact adsorption room air conditioner. Energy Conv Manag 47(15):2167–2177

    Google Scholar 

  31. Chen CJ et al (2010) Study on a silica gel–water adsorption chiller integrated with a closed wet cooling tower. Int J Therm Sci 49(3):611–620

    Article  Google Scholar 

  32. Chen CJ et al (2010) Study on a compact silica gel–water adsorption chiller without vacuum valves: design and experimental study. Appl Energy 87(8):2673–2681

    Article  Google Scholar 

  33. Lu ZS et al (2011) An analysis of the performance of a novel solar silica gel–water adsorption air conditioning. Appl Therm Eng 31(17–18):3636–3642

    Article  Google Scholar 

  34. Saha BB, Akisawa A, Kashiwagi T (2001) Solar/waste heat driven two-stage adsorption chiller: the prototype. Renew Energy 23(1):93–101

    Article  Google Scholar 

  35. Saha BB et al (2006) Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller. Renew Energy 31(13):2076–2090

    Article  MathSciNet  Google Scholar 

  36. Wang SG et al (2003) Experimental results and analysis for adsorption ice-making system with consolidated adsorbent. Adsorption 9(4):349–358

    Article  Google Scholar 

  37. Wang RZ (2001) Performance improvement of adsorption cooling by heat and mass recovery operation. Int J Refrig 24(7):602–611

    Article  Google Scholar 

  38. Shu G et al (2013) A review of waste heat recovery on two-stroke IC engine aboard ships. Renew Sustain Energy Rev 19(1):385–401

    Article  Google Scholar 

  39. Cao T et al (2015) Performance investigation of engine waste heat powered absorption cycle cooling system for shipboard applications. Appl Therm Eng 90:820–830

    Article  Google Scholar 

  40. Kong XQ et al (2008) Experimental investigation of a micro-combined cooling, heating and power system driven by a gas engine. Energy Conv Manag 28(7):977–987

    Google Scholar 

  41. Li S, Wu JY (2009) Theoretical research of a silica gel–water adsorption chiller in a micro combined cooling, heating and power (CCHP) system. Appl Energy 86(6):958–967

    Article  Google Scholar 

  42. Grisel RJH, Smeding SF, Boer RD (2010) Waste heat driven silica gel/water adsorption cooling in trigeneration. Appl Therm Eng 30(8–9):1039–1046

    Article  Google Scholar 

  43. Zhai H et al (2009) Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Appl Energy 86(9):1395–1404

    Article  Google Scholar 

  44. Tangkengsirisin V, Kanzawa A, Watanabe T (1998) A solar-powered adsorption cooling system using a silica gel–water mixture. Energy 23(5):347–353

    Article  Google Scholar 

  45. Luo HL et al (2007) An efficient solar-powered adsorption chiller and its application in low-temperature grain storage. Sol Energy 81(5):607–613

    Article  Google Scholar 

  46. Zhai XQ et al (2008) Design and performance of a solar-powered air-conditioning system in a green building. Appl Energy 85(5):297–311

    Article  Google Scholar 

  47. Lu Z, Wang R, Xia Z (2013) Experimental analysis of an adsorption air conditioning with micro-porous silica gel–water. Appl Therm Eng 50(1):1015–1020

    Article  Google Scholar 

  48. Santori G, Sapienza A, Freni A (2012) A dynamic multi-level model for adsorptive solar cooling. Renew Energy 43:301–312

    Article  Google Scholar 

  49. Lu ZS et al (2013) Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors. Renew Energy 50(3):299–306

    Article  Google Scholar 

  50. Chang WS, Wang CC, Shieh CC (2009) Design and performance of a solar-powered heating and cooling system using silica gel/water adsorption chiller. Appl Therm Eng 29(10):2100–2105

    Article  Google Scholar 

  51. Wang D et al (2012) Investigation of adsorption performance deterioration in silica gel–water adsorption refrigeration. J Eng Thermophys 58(9):157–162

    Google Scholar 

  52. Freni A et al (2007) An advanced solid sorption chiller using SWS-1L. Appl Therm Eng 27(13):2200–2204

    Article  Google Scholar 

  53. Ahamat MA, Tierney MJ (2012) Calorimetric assessment of adsorbents bonded to metal surfaces: application to type a silica gel bonded to aluminium. Appl Therm Eng 40(40):258–266

    Article  Google Scholar 

  54. Rezk A et al (2013) Effects of contact resistance and metal additives in finned-tube adsorbent beds on the performance of silica gel/water adsorption chiller. Appl Therm Eng 53(2):278–284

    Article  MathSciNet  Google Scholar 

  55. Li J et al (2004) Optimal Design of a fin-Type Silica gel Tube Module in the silica gel/water adsorption heat pump. J Chem Eng Jpn 37(4):551–557

    Article  MathSciNet  Google Scholar 

  56. Kubota M et al (2008) Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module. Appl Therm Eng 28(2):87–93

    Article  Google Scholar 

  57. Niazmand H, Talebian H, Mahdavikhah M (2012) Bed geometrical specifications effects on the performance of silica/water adsorption chillers. Int J Refrig 35(8):2261–2274

    Article  Google Scholar 

  58. Khan MZI et al (2007) Study on a re-heat two-stage adsorption chiller – the influence of thermal capacitance ratio, overall thermal conductance ratio and adsorbent mass on system performance. Appl Therm Eng 27(10):1677–1685

    Article  Google Scholar 

  59. Miyazaki T, Akisawa A (2009) The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers. Appl Therm Eng 29(13):2708–2717

    Article  Google Scholar 

  60. Alam KCA et al (2000) Heat exchanger design effect on the system performance of silica gel adsorption refrigeration systems. Int J Heat Mass Tran 43(24):4419–4431

    Article  Google Scholar 

  61. Farid SK et al (2011) A numerical analysis of cooling water temperature of two-stage adsorption chiller along with different mass ratios. Int Comm Heat Mass Tran 38(8):1086–1092

    Article  Google Scholar 

  62. Hamamoto Y et al (2005) Performance evaluation of a two-stage adsorption refrigeration cycle with different mass ratio. Int J Refrig 28(3):344–352

    Article  Google Scholar 

  63. Wang L et al (2005) Research on the chemical adsorption precursor state of CaCl2-NH3 for adsorption refrigeration. SCIENCE CHINA Technol Sci 48(1):70–82

    Article  Google Scholar 

  64. Wu JY, Li S (2009) Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source. Energy 34(11):1955–1962

    Article  Google Scholar 

  65. Zhang G et al (2011) Simulation of operating characteristics of the silica gel–water adsorption chiller powered by solar energy. Sol Energy 85(7):1469–1478

    Article  Google Scholar 

  66. Liu Y, Wang R (2003) Pore structure of new composite adsorbent SiO2·xH2O· yCaCl2 with high uptake of water from air. SCIENCE CHINA Technol Sci 46(5):551–559

    Article  Google Scholar 

  67. Aristov YI et al (2007) Sorption equilibrium of methanol on new composite sorbents “CaCl 2 /silica gel”. Adsorption 13(2):121–127

    Article  Google Scholar 

  68. Zhang XJ, Qiu LM (2007) Moisture transport and adsorption on silica gel–calcium chloride composite adsorbents. Energy Conv Manag 48(1):320–326

    Article  Google Scholar 

  69. Chen J et al (2015) A review on versatile ejector applications in refrigeration systems. Renew Sustain Energy Rev 49:67–90

    Article  Google Scholar 

  70. He S, Li Y, Wang RZ (2009) Progress of mathematical modeling on ejectors. Renew Sustain Energy Rev 13(8):1760–1780

    Article  Google Scholar 

  71. Chen X et al (2013) Recent developments in ejector refrigeration technologies. Renew Sustain Energy Rev 19(1):629–651

    Article  Google Scholar 

  72. Zhu Y, Jiang P (2014) Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance. Int J Refrig 40:31–42

    Article  Google Scholar 

  73. Angelino G, Invernizzi C (2008) Thermodynamic optimization of ejector actuated refrigerating cycles. Int J Refrig 31(3):453–463

    Article  Google Scholar 

  74. Chen YM, Sun CY (1997) Experimental study of the performance characteristics of a steam-ejector refrigeration system. Exper Therm Fluid Sci 15(4):384–394

    Article  Google Scholar 

  75. Al-Khalidy N (1998) An experimental study of an ejector cycle refrigeration machine operating on R113: Etude expérimentale d'une machine frigorifique à éjecteur au R113. Int J Refrig 21(8):617–625

    Article  Google Scholar 

  76. Yu J, Zhao H, Li Y (2008) Application of an ejector in autocascade refrigeration cycle for the performance improvement. Int J Refrig 31(2):279–286

    Article  Google Scholar 

  77. Elakdhar M, Nehdi AE, Kairouani L (2007) Analysis of a compression/ejection cycle for domestic refrigeration. Ind Eng Chem Res 46(13):4639–4644

    Article  Google Scholar 

  78. Palm B (2008) Hydrocarbons as refrigerants in small heat pump and refrigeration systems – a review. Int J Refrig 31(4):552–563

    Article  Google Scholar 

  79. Sarbu I (2014) A review on substitution strategy of non-ecological refrigerants from vapour compression-based refrigeration, air-conditioning and heat pump systems. Int J Refrig 46:123–141

    Article  Google Scholar 

  80. Selvaraju A, Mani A (2004) Analysis of an ejector with environment friendly refrigerants. Appl Therm Eng 24(5–6):827–838

    Article  Google Scholar 

  81. Sirwan R et al (2013) Evaluation of adding flash tank to solar combined ejector–absorption refrigeration system. Sol Energy 91(3):283–296

    Article  Google Scholar 

  82. Alexis GK, Katsanis JS (2004) Performance characteristics of a methanol ejector refrigeration unit. Energy Conv Manag 45(17):2729–2744

    Article  Google Scholar 

  83. Jiang L et al (2002) Thermo-economical analysis between new absorption–ejector hybrid refrigeration system and small double-effect absorption system. Appl Therm Eng 22(9):1027–1036

    Article  Google Scholar 

  84. Li D, Groll EA (2005) Transcritical CO2 refrigeration cycle with ejector-expansion device. Int J Refrig 28(5):766–773

    Article  Google Scholar 

  85. Yari M, Sirousazar M (2008) Cycle improvements to ejector-expansion transcritical CO2 two-stage refrigeration cycle. Int J Energy Res 32:677–687

    Article  Google Scholar 

  86. Ahammed ME, Bhattacharyya S, Ramgopal M (2014) Thermodynamic design and simulation of a CO2 based transcritical vapour compression refrigeration system with an ejector. Int J Refrig 45:177–188

    Article  Google Scholar 

  87. Pridasawas W, Lundqvist P (2004) An exergy analysis of a solar-driven ejector refrigeration system. Sol Energy 76(4):369–379

    Article  Google Scholar 

  88. Li CH, Wang RZ, Lu YZ (2002) Investigation of a novel combined cycle of solar powered adsorption–ejection refrigeration system. Renew Energy 26(4):611–622

    Article  Google Scholar 

  89. Zhang XJ, Wang RZ (2002) A new combined adsorption–ejector refrigeration and heating hybrid system powered by solar energy. Appl Therm Eng 22(11):1245–1258

    Article  Google Scholar 

  90. Dorantes R, Estrada CA, Pilatowsky I (1996) Mathematical simulation of a solar ejector-compression refrigeration system. Appl Therm Eng 16(8–9):669–675

    Article  Google Scholar 

  91. Sokolov M, Hershgal D (1990) Enhanced ejector refrigeration cycles powered by low grade heat. Part 1. Systems characterization. Int J Refrig 13(6):351–356

    Article  Google Scholar 

  92. Sokolov M, Hershgal D (1990) Enhanced ejector refrigeration cycles powered by low grade heat. Part 2. Design procedures. Int J Refrig 13(6):357–363

    Article  Google Scholar 

  93. Sokolov M, Hershgal D (1991) Enhanced ejector refrigeration cycles powered by low grade heat. Part 3. Experimental results. Int J Refrig 14(1):24–31

    Article  Google Scholar 

  94. Hernández JI et al (2004) The behaviour of a hybrid compressor and ejector refrigeration system with refrigerants 134a and 142b. Appl Therm Eng 24(13):1765–1783

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Li .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Li, J., Kong, X. (2018). Thermally Activated Refrigeration Technologies. In: Wang, R., Zhai, X. (eds) Handbook of Energy Systems in Green Buildings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49120-1_38

Download citation

Publish with us

Policies and ethics