Skip to main content

Cases of Energy System in a Green Building in UK

  • Living reference work entry
  • First Online:
Handbook of Energy Systems in Green Buildings

Abstract

This chapter gives an overview of the current development of the indirect evaporative cooling technologies, PV and PV/T solar energy systems, natural ventilation systems, heat recovery systems, and low-energy lighting technologies. And the fundamentals of these techniques are introduced. The cases of the application of the above technologies in the UK and Europe have been presented. This chapter also introduces some low/near-zero-energy buildings in the UK and Europe, with various renewable and energy efficiency technologies applied in these buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. ASHRAE, ANSI/ASHRAE Standard 143-2000 (2000) Method of test for rating indirect evaporative coolers. American Society of Heating, Refrigerating and Air-Conditioning Engineers. GA 30329

    Google Scholar 

  2. ASHRAE (2009) ASHRAE handbook fundamentals volume: SI edition. American Society of Heating, Refrigerating and Air-Conditioning Engineers. Attanta

    Google Scholar 

  3. http://www.coolmax.com.au/evaporative-cooling/evaporative-cooling-areas.htm

  4. https://www.munters.com/en/munters/products/coolers--humidifiers/oasis-iec-200/

  5. IEA Energy Conservation in Building and Community Systems Program Annex 28- Low Energy Cooling (1998). Case studies of low energy cooling technologies. British Crown

    Google Scholar 

  6. Tom De Saulles (2004) A BSRIA guide – free cooling systems. BSRIA

    Google Scholar 

  7. Duan Z, Zhan C, Zhang X, Zhao X (2012) Indirect evaporative cooling: past, present and future potentials. Renew Sust Energ Rev 16:6823–6850

    Article  Google Scholar 

  8. (2016) Milestone in solar cell efficiency achieved: new record for unfocused sunlight edges closer to theoretic limits. Wilson da Silva. Science Daily

    Google Scholar 

  9. BRE National Solar Centre and Delta-ee. Evidence gathering – low carbon heating technologies – hybrid solar photovoltaic thermal panels, 2014.

    Google Scholar 

  10. Zhou J, Zhao X, Ma X, Ji J, Du Z, Yu M (2016) Experimental study of a novel PV/micro-channel-heat-exchanging collector based heat pump system. Appl Energy 178:484–495

    Article  Google Scholar 

  11. Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energy 87:365–379

    Article  Google Scholar 

  12. Gang P, Huide F, Huijuan Z, Jie J (2012) Performance study and parametric analysis of a novel heat pipe PV/T system. Energy 37:384–395

    Article  Google Scholar 

  13. TRENDS (2015) In photovoltaic applications executive summary. International Energy Agency, T1–27:2015

    Google Scholar 

  14. Elliott D (2011) PV/T software coherence and applicability. University of Strathclyde, Glasgow

    Google Scholar 

  15. Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings (recast). Off J Eur Union, 18.6.2010 L 153/13

    Google Scholar 

  16. Allard F (1998) Natural ventilation in buildings: a design handbook. James & James, London, 356 p

    Google Scholar 

  17. Russel M, Sherman M, Rudd A (2005) Review of residential ventilation technologies. Lawrence Berkeley National Laboratory. LBNL 57730, Aug 2005

    Google Scholar 

  18. Concannon P (2002) Residential ventilation. AIVC Technical Note 57, 2002

    Google Scholar 

  19. Chenari B, Carrilho JD, Da Silva MG (2016) Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: a review. Renew Sust Energ Rev 59(2016):1426–1447

    Article  Google Scholar 

  20. Lomas KJ (2006) Architectural design of an advanced naturally ventilated building form. Energ Buildings 39(2):166–188. ISBN 03787788

    Article  Google Scholar 

  21. Heiselberg P (2002) Principles of hybrid ventilation. Aalborg University, Aalborg

    Google Scholar 

  22. Mardiana A, Riffat SB (2013) Review on physical and performance parameters of heat recovery systems for building applications. Renew Sust Energ Rev 28(2013):174–190

    Article  Google Scholar 

  23. Vali A, Simonson CJ, Besant RW, Mahmood G (2009) Numerical model and effectiveness correlations for a run-around heat recovery system with combined counter and cross flow exchangers. Int J Heat Mass Transf 52(2009):5827–5584

    Article  MATH  Google Scholar 

  24. Dallaire J, Gosselin L, da Silva AK Conceptual optimization of a rotary heat exchanger with a porous core. Int J Therm Sci 49(2010):454–462

    Google Scholar 

  25. O’Connor D, Kaiser S, Calautit J, Hughes BR (2016) A review of heat recovery technology for passive ventilation applications. Renew Sust Energ Rev 54(2016):1481–1493

    Article  Google Scholar 

  26. Guillén-Lambea S, Rodríguez-Soria B, Marín JM (2016) Evaluation of the potential energy recovery for ventilation air in dwellings in the South of Europe. Energ Buildings 128:384–393

    Article  Google Scholar 

  27. Alonso MJ, Liu P, Mathisen HM, Ge G, Simonson C (2015) Review of heat/energy recovery exchangers for use in ZEBs in cold climate countries. Build Environ 84:228–237

    Article  Google Scholar 

  28. Liddament M (1996) A guide to energy-efficient ventilation. AIVC, Brussels

    Google Scholar 

  29. Guillén-Lambea S, Rodríguez-Soria B, Marín JM (2016) Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renew Sustain Energy Rev 62(2016):561–574

    Article  Google Scholar 

  30. Litiu A (2012) Ventilation system types in some EU countries. REHVA J

    Google Scholar 

  31. Sassi P (2013) A natural ventilation alternative to the Passivhaus standard for a mild maritime climate. Buildings 3:61–78

    Article  Google Scholar 

  32. Hernandez P, Kenny P (2010) Integrating occupant preference and life cycle energy. Evaluation: a simplified method. Build Res Inf 38(6):625–637

    Article  Google Scholar 

  33. da Graça GC, Linden P (2016) Ten questions about natural ventilation of non-domestic buildings. Build Environ 107(2016):263–273

    Article  Google Scholar 

  34. Eicker U (2013) Controlled natural ventilation for energy efficient buildings. Energ Build 56:221–232

    Article  Google Scholar 

  35. Froland-Larson A (2001) Energieverbrauch für Lüftung. DANVAK J 2:598F502A

    Google Scholar 

  36. BRECSU (2000) Energy consumption guide 19: energy use in offices. British Research Establishment Conservation Support Unit, Garston. 23 pages

    Google Scholar 

  37. Blondeau P, Spérandio M, Allard F (1997) Night ventilation for building cooling in summer. Sol Energy 61(5):327–335

    Article  Google Scholar 

  38. Gratia E, De Herde A (2004) Natural cooling strategies efficiency in an office building with a double-skin facade. Energ Buildings 36(11):1139–1152

    Article  Google Scholar 

  39. Koffi J, Allard F, Akoua J-J (2010) Numerical comparison of ventilation strategies performance in a singlefamily dwelling 10th REHVA WORLD CONGRESS “Sustainable Energy Use in Buildings”, Antalya: Turkey (2010)”

    Google Scholar 

  40. Oropeza-Perez I, Østergaard PA (2014) Potential of natural ventilation in temperate countries – a case study of Denmark. Appl Energy 114(2014):520–530

    Article  Google Scholar 

  41. Krausse B, Cook M, Lomas K (2007) Environmental performance of a naturally ventilated city centre library. Energ Buildings 39:792–801

    Article  Google Scholar 

  42. Dodoo A, Gustavsson L, Sathre R (2011) Primary energy implications of ventilation heat recovery in residential buildings. Energ Buildings 43:1566–1572

    Article  Google Scholar 

  43. CELMA & ELC (2011) The importance of lighting. The quality of light. Enhancing life

    Google Scholar 

  44. De Almeida A, Santos B, Paolo B, Quicheron M (2011) Solid state lighting review – potential and challenges in Europe. Energ Buildings 43(2011):2572–2582

    Google Scholar 

  45. Dubois MC, Blomsterberg Å (2011) Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review. Energ Buildings 43(2011):2572–2582

    Article  Google Scholar 

  46. Jenkins D (2007) An approach for estimating the carbon emissions associated with office lighting with a daylight contribution. Appl Energy 84:608–622

    Article  Google Scholar 

  47. James S (2011) Solid state lighting. SSLEC – Solid State Lighting and Energy, Santa Barbara

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Zhao .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this entry

Cite this entry

Zhao, X., Ma, X., Xu, P., Thierno, D., Zhu, Z., Zhou, J. (2017). Cases of Energy System in a Green Building in UK. In: Wang, R., Zhai, X. (eds) Handbook of Energy Systems in Green Buildings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49088-4_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49088-4_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49088-4

  • Online ISBN: 978-3-662-49088-4

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics