Skip to main content

Remotely Sensed Evapotranspiration

  • Living reference work entry
  • First Online:
Observation and Measurement of Ecohydrological Processes

Part of the book series: Ecohydrology ((ECOH))

  • 278 Accesses

Abstract

Land surface evapotranspiration (E) is a key component of the water and energy balance over terrestrial ecosystems, quantification of which has long been an important topic in hydrological, meteorological, agricultural, and ecological studies. This chapter focuses on the quantification of E using remote sensing-based approaches, which provide a promising opportunity for spatially consistent and temporally continuous E mapping. An introduction of surface energy balance is firstly presented, followed by three typical methods of estimating E from remote sensing imageries (i.e., surface energy balance-based models, vegetation index-land surface temperature space models, and Penman-Monteith-based models) and the ETWatch model that combines the energy balance and Penman-Monteith models. A working example of comparing three remote sensing E models is then provided to better inform the model physics, as well as advantages and drawbacks. Additionally, temporal and spatial scaling methods are presented. Finally, existing terrestrial E products that have a global coverage and are publically accessible are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • N. Agam, W.P. Kustas, M.C. Anderson, J.M. Norman, P.D. Colaizzi, T.A. Howell, J.H. Prueger, T.P. Meyers, T.B. Wilson, Application of the Priestley–Taylor Approach in a Two-Source Surface Energy Balance Model, J. Hydrometeorol. 11, 185 (2010)

    Article  Google Scholar 

  • R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop Evapotranspiration. FAO Irrigation and Drainage Paper 56, Rome, (1998)

    Google Scholar 

  • R.G. Allen, M. Tasumi, A. Morse, R. Trezza, J.L. Wright, W. Bastiaanssen, W. Kramber, I. Lorite, C.W. Robison, Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) - Applications, J. Irrig. Drain. Eng. 133, 395 (2007)

    Article  Google Scholar 

  • M.C. Anderson, J.M. Norman, G.R. Diak, W.P. Kustas, J.R. Mecikalski, A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing, Remote Sens. Environ. 60, 195 (1997)

    Article  Google Scholar 

  • M.C. Anderson, J.M. Norman, J.R. Mecikalski, J.A. Otkin, W.P. Kustas, A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation, J. Geophys. Res. Atmos. 112 (2007)

    Google Scholar 

  • W.G.M. Bastiaanssen, M. Menenti, R.A. Feddes, A.A.M. Holtslag, A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation, J. Hydrol. 212–213, 198 (1998)

    Article  Google Scholar 

  • G.B. Bonan, Ecological Climatology: Concepts and Applications (Cambridge University Press, New York, 2002)

    Google Scholar 

  • G.S. Campbell, J.M. Norman, Introduction to Environmental Biophysics (Springer, New York, 1998)

    Book  Google Scholar 

  • T. Carlson, An overview of the “Triangle Method” for estimating surface evapotranspiration and soil moisture from satellite imagery, Sensors 7, 1612 (2007)

    Google Scholar 

  • T.N. Carlson, W.J. Capehart, R.R. Gillies, A new look at the simplified method for remote sensing of daily evapotranspiration, Remote Sens. Environ. 54, 161 (1995)

    Article  Google Scholar 

  • Y. Chen et al., Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China, Remote Sens. Environ. 140, 279 (2014)

    Article  Google Scholar 

  • X.P. Deng et al., Improving agricultural water use efficiency in arid and semiarid areas of China, Agric. Water Manag. 80, 23 (2006)

    Article  Google Scholar 

  • J.B. Fisher, K.P. Tu, D.D. Baldocchi, Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ. 112, 901 (2008)

    Article  Google Scholar 

  • R. Franke, Scattered Data Interpolation: Tests of Some Method, Math. Comput. 38, 181 (1982)

    Google Scholar 

  • R. Gan, Y. Zhang, H. Shi, Y. Yang, D. Eamus, L. Cheng, F.H.S. Chiew, Q. Yu, Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems, Ecohydrology 0, e1974 (2018)

    Google Scholar 

  • A. Gillespie, S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, A.B. Kahle, A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans. Geosci. Remote Sens. 36, 1113 (1998)

    Google Scholar 

  • H. Guan, J.L. Wilson, A hybrid dual-source model for potential evaporation and transpiration partitioning, J. Hydrol. 377, 405 (2009)

    Article  Google Scholar 

  • H.R. Haise, H.J. Haas, L.R. Jensen, Soil moisture studies of some Great Plains soil: II Field capacity as related to 1/3-atmosphere percentage, and “minimum point” related to 15- and 26- atmosphere percentages, Soil Sci. Soc. Am. J. 19, 20 (1955)

    Google Scholar 

  • A.S. Hope, D.E. Petzold, S.N. Goward, R.M. Ragan, Simulated relationships between spectral reflectance, thermal emissions, and evapotranspiration of a soybean canopy, J. Am. Water Resour. Assoc. 22, 1011 (1986)

    Article  Google Scholar 

  • A. Huete, K. Didan, T. Miura, E.P. Rodriguez, X. Gao, L.G. Ferreira, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ. 83, 195 (2002)

    Article  Google Scholar 

  • R.D. Jackson, R.J. Reginato, S.B. Idso, Wheat canopy temperature: A practical tool for evaluating water requirements, Water Resour. Res. 13, 651 (1977)

    Article  Google Scholar 

  • R.D. Jackson, J.L. Hatfield, R.J. Reginato, S.B. Idso, P.J. Pinter, Estimation of daily evapotranspiration from one time-of-day measurements, Agric. Water Manag. 7, 351 (1983)

    Article  Google Scholar 

  • L. Jiang, S. Islam, A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations, Geophys. Res. Lett. 26(17), 2773–2776 (1999)

    Article  Google Scholar 

  • L. Jiang, S. Islam, Estimation of surface evaporation map over Southern Great Plains using remote sensing data, Water Resour. Res. 37, 329 (2001)

    Article  Google Scholar 

  • M. Jung et al., Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res. Biogeosci. 116 (2011)

    Google Scholar 

  • B.E. Law et al., Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agric. For. Meteorol. 113, 97 (2002)

    Article  Google Scholar 

  • R. Leuning, A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ. 18, 339 (1995)

    Google Scholar 

  • F. Li, W.P. Kustas, M.C. Anderson, J.H. Prueger, R.L. Scott, Effect of remote sensing spatial resolution on interpreting tower-based flux observations, Remote Sens. Environ. 112, 337 (2008)

    Article  CAS  Google Scholar 

  • X. Li et al., Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design, Bull. Am. Meteorol. Soc. 94, 1145 (2013)

    Article  Google Scholar 

  • S. Liang, Narrowband to broadband conversions of land surface albedo I: Algorithms, Remote Sens. Environ. 76, 213 (2001)

    Article  Google Scholar 

  • C.M. Liu, X. Zhang, Y. Zhang, Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter, Agric. For. Meteorol. 111, 109 (2002)

    Article  Google Scholar 

  • Y. Liu, X. Mu, H. Wang, G. Yan, G. Henebry, A novel method for extracting green fractional vegetation cover from digital images, J. Veg. Sci. 23, 406 (2012)

    Article  Google Scholar 

  • D. Long, V. P. Singh, A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery, Remote Sens. Environ. 121, 370–388 (2012).

    Google Scholar 

  • D. Long, V.P. Singh, B.R. Scanlon, Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation, J. Geophys. Res. Atmos. 117, (2012)

    Google Scholar 

  • D. Long, L. Longuevergne, B.R. Scanlon, Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites, Water Resour. Res. 50, 1131 (2014)

    Article  Google Scholar 

  • O. Merlin, J. Chirouze, A. Olioso, L. Jarlan, G. Chehbouni, G. Boulet, An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S), Agric. For. Meteorol. 184, 188 (2014)

    Article  Google Scholar 

  • D.G. Miralles, R.A.M. de Jeu, J.H. Gash, T.R.H. Holmes, A.J. Dolman, Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci. 15, 967 (2011)

    Article  Google Scholar 

  • J. Monteith, Evaporation and environment, Symp. Soc. Exp. Biol. 19, 205 (1965)

    CAS  Google Scholar 

  • M.S. Moran, T.R. Clarke, Y. Inoue, A. Vidal, Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index, Remote Sens. Environ. 49, 246 (1994)

    Article  Google Scholar 

  • Q. Mu, F.A. Heinsch, M. Zhao, S.W. Running, Development of a global evapotranspiration algorithm based on MODIS and global meteorology data, Remote Sens. Environ. 111, 519 (2007)

    Article  Google Scholar 

  • Q. Mu, M. Zhao, S.W. Running, Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ. 115, 1781 (2011)

    Article  Google Scholar 

  • R.R. Nemani, S.W. Running, J. Appl. Meteorol. 28, 276 (1989)

    Google Scholar 

  • K. Nishida, R.R. Nemani, J.M. Glassy, S.W. Running, Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status, IEEE Trans. Geosci. Remote Sens. 41, 493 (2003)

    Article  Google Scholar 

  • J.M. Norman, W.P. Kustas, K.S. Humes, Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agric. For. Meteorol. 77, 263 (1995)

    Article  Google Scholar 

  • J.M. Norman, M.C. Anderson, W.P. Kustas, A.N. French, J. Mecikalski, R. Torn, G.R. Diak, T.J. Schmugge, B.C.W. Tanner, Remote sensing of surface energy fluxes at 101-m pixel resolutions, Water Resour. Res. 39, (2003)

    Google Scholar 

  • K. Ogawa, T. Schmugge, Mapping Surface Broadband Emissivity of the Sahara Desert Using ASTER and MODIS Data, Earth Interact. 8, 1 (2004)

    Article  Google Scholar 

  • T. Oki, S. Kanae, Global hydrological cycle and world water resources, Science 25, 1068 (2006)

    Article  CAS  Google Scholar 

  • C.A. Paulson, The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer, J. Appl. Meteorol. 9, 857 (1970)

    Article  Google Scholar 

  • R. Raoufi, E. Beighley, Estimating Daily Global Evapotranspiration Using Penman–Monteith Equation and Remotely Sensed Land Surface Temperature, Remote Sens. 9, 1138 (2017)

    Google Scholar 

  • G.J. Roerink, Z. Su, M. Menenti, S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance, Phys. Chem. Earth Part B: Hydrol. Oceans Atmos. 25, 147 (2000)

    Article  Google Scholar 

  • R.D. Rosen, The Global Energy Cycle (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  • Y. Ryu et al., On the temporal upscaling of evapotranspiration from instantaneous remote sensing measurements to 8-day mean daily-sums, Agric. For. Meteorol. 152, 212 (2012)

    Article  Google Scholar 

  • J.M. Sánchez, W.P. Kustas, V. Caselles, M.C. Anderson, Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations, Remote Sens. Environ. 112, 1130 (2008)

    Article  Google Scholar 

  • T. Schmugge, S.J. Hook, C. Coll, Recovering Surface Temperature and Emissivity from Thermal Infrared Multispectral Data, Remote Sens. Environ. 65, 121 (1998)

    Article  Google Scholar 

  • D.A. Sims et al., A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS, Remote Sens. Environ. 112, 1633 (2008)

    Article  Google Scholar 

  • Z. Su, The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes, Hydrol. Earth Syst. Sci. 6, 85 (2002)

    Article  Google Scholar 

  • M. Sugita, W. Brutsaert, Daily evaporation over a region from lower boundary layer profiles measured with radiosondes, Water Resour. Res. 27, 747 (1991)

    Article  Google Scholar 

  • Z. Sun, Q. Wang, B. Matsushita, T. Fukushima, Z. Ouyang, M. Watanabe, Development of a Simple Remote Sensing EvapoTranspiration model (Sim-ReSET): Algorithm and model test, J. Hydrol. 376, 476 (2009)

    Article  Google Scholar 

  • T.E. Twine, W.P. Kustas, J.M. Norman, D.R. Cook, P.R. Houser, T.P. Meyers, J.H. Prueger, P.J. Starks, M.L. Wesely, Correcting eddy-covariance flux underestimates over a grassland, Agric. For. Meteorol. 103, 279 (2000)

    Article  Google Scholar 

  • K. Wang, Z. Li, M. Cribb, Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter, Remote Sens. Environ. 102, 293 (2006)

    Article  Google Scholar 

  • K. Wang, P. Wang, Z. Li, M. Cribb, M. Sparrow, A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res. Atmos. 112 (2007)

    Google Scholar 

  • K. Wang, R. Dickson, M. Wild, S. Liang, Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development, J. Geophys. Res. 115, D20112 (2010)

    Article  Google Scholar 

  • R. Waters, R. Allen, M. Tasumi, R. Trezza, W. Bastiaanssen, SEBAL Advanced Training and Users Manual version 1.0, Idaho (2002)

    Google Scholar 

  • E.K. Webb, Profile relationships: The log-linear range, and extension to strong stability, Q. J. R. Meteorol. Soc. 96, 67 (1970)

    Article  Google Scholar 

  • X.F. Wen, X. Lee, X.M. Sun, J.L. Wang, Y.K. Tang, S.G. Li, G.R. Yu, Intercomparison of Four Commercial Analyzers for Water Vapor Isotope Measurement, J. Atmos. Ocean. Technol. 29, 235 (2012)

    Article  Google Scholar 

  • B. Wu, J. Xiong, N. Yan, ETWatch for monitoring regional evapotranspiration with remote sensing, Adv. Water Sci. 19, 671–678 (2008)

    Google Scholar 

  • B. Wu, J. Xiong, N. Yan, ETWatch: A method of multi-resolution ET data fusion, J. Remote Sens. 15, 224–239 (2011)

    Google Scholar 

  • Y. Yang, Evapotranspiration Over Heterogeneous Vegetated Surfaces: Models and Applications (Springer, Berlin, 2015)

    Google Scholar 

  • Y. Yang, S. Shang, A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: Algorithm and model test, J. Geophys. Res. Atmos. 118, 2284 (2013)

    Article  Google Scholar 

  • Y. Yang, D. Long, S. Shang, Remote estimation of terrestrial evapotranspiration without using meteorological data, Geophys. Res. Lett. 40, 3026 (2013a)

    Article  Google Scholar 

  • Y.Yang, R.L. Scott, S. Shang, Modeling evapotranspiration and its partitioning over a semiarid shrub ecosystem from satellite imagery: a multiple validation, (SPIE, 2013b), p. 16

    Google Scholar 

  • Y. Yang, D. Long, H. Guan, W. Liang, C. Simmons, O. Batelaan, Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics, Water Resour. Res. 51, 3145 (2015)

    Article  Google Scholar 

  • Y. Yao et al., MODIS-driven estimation of terrestrial latent heat flux in China based on amodified Priestley–Taylor algorithm, Agric. For. Meteorol. 171–172, 187–202 (2013)

    Article  Google Scholar 

  • Y. Yao et al., Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations, J. Geophys. Res.-Atmos. 119, 4524–4545 (2014)

    Google Scholar 

  • W. Yuan et al., Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data, Remote Sens. Environ. 114, 1416–1431 (2010)

    Article  Google Scholar 

  • Z.Z. Zeng, S.L. Piao, X. Lin, G.D. Yin, S.S. Peng, P. Ciais, R.B. Myneni, Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models, Environ. Res. Lett. 7, 014026 (2012)

    Article  Google Scholar 

  • R.H. Zhang, X.M. Sun, W.M. Wang, J.P. Xu, Z.L. Zhu, J. Tian, An operational two-layer remote sensing model to estimate surface flux in regional scale: Physical background, Sci. China Earth Sci. 48, 225 (2005)

    Article  Google Scholar 

  • Y. Zhang, R. Leuning, L.B. Hutley, J. Beringer, I. McHugh, J.P. Walker, Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution, Water Resour. Res. 46, W05512 (2010a)

    Google Scholar 

  • K. Zhang, J.S. Kimball, R.R. Nemani, S.W. Running, A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006, Water Resour. Res. 46 (2010b)

    Google Scholar 

  • Y. Zhang et al., Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep. 6, 19124 (2016)

    Article  CAS  Google Scholar 

  • X. Zhu, J. Chen, F. Gao, X. Chen, J.G. Masek, An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions, Remote Sens. Environ. 114, 2610 (2010)

    Article  Google Scholar 

  • G.F. Zhu, K. Zhang, X. Li, S.M. Liu, Z.Y. Ding, J.Z. Ma, C.L. Huang, T. Han, J.H. He, Evaluating the complementary relationship for estimating evapotranspiration using the multi-site data across north China, Agric. For. Meteorol. 230–231, 33 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuting Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, Y. (2018). Remotely Sensed Evapotranspiration. In: Li, X., Vereecken, H. (eds) Observation and Measurement of Ecohydrological Processes. Ecohydrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47871-4_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47871-4_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47871-4

  • Online ISBN: 978-3-662-47871-4

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics