Skip to main content

Alterations of Energy Metabolism in Cutaneous Aging

  • Reference work entry
  • First Online:

Abstract

Energy metabolism plays an important role in cutaneous aging. Cellular energy levels deciline during intrinsic and extrinsic aging and consequently the capacity of the skin to encounter environmental stress declines with aging. More detail on this relationship is presented in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Birch-Machin MA. The role of mitochondria in ageing and carcinogenesis. Clin Exp Dermatol. 2006;31:548–52.

    Article  CAS  PubMed  Google Scholar 

  2. Jendrach M, Pohl S, Voth M, et al. Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev. 2005;126:813–21.

    Article  CAS  PubMed  Google Scholar 

  3. Hansford RG. Bioenergetics in aging. Biochim Biophys Acta. 1983;726:41–80.

    Article  CAS  PubMed  Google Scholar 

  4. Goldstein S, Moerman EJ, Porter K. High-voltage electron microscopy of human diploid fibroblasts during ageing in vitro. Morphometric analysis of mitochondria. Exp Cell Res. 1984;154:101–11.

    Article  CAS  PubMed  Google Scholar 

  5. Brantova O, Tesarova M, Hansikova H, et al. Ultrastructural changes of mitochondria in the cultivated skin fibroblasts of patients with point mutations in mitochondrial DNA. Ultrastruct Pathol. 2006;30:239–45.

    Article  PubMed  Google Scholar 

  6. Feldman D, Bryce GF, Shapiro SS. Mitochondrial inclusions in keratinocytes of hairless mouse skin exposed to UVB radiation. J Cutan Pathol. 1990;17:96–100.

    Article  CAS  PubMed  Google Scholar 

  7. Guillery O, Malka F, Frachon P, et al. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts. Neuromuscul Disord. 2008;18:319–30.

    Article  CAS  PubMed  Google Scholar 

  8. Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol. 2007;27:4228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta. 1996;1276:87–105.

    Article  PubMed  Google Scholar 

  10. Zwerschke W, Mazurek S, Stockl P, et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J. 2003;376:403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sugrue MM, Tatton WG. Mitochondrial membrane potential in aging cells. Biol Signals Recept. 2001;10:176–88.

    Article  CAS  PubMed  Google Scholar 

  12. Rottenberg H, Wu S. Mitochondrial dysfunction in lymphocytes from old mice: enhanced activation of the permeability transition. Biochem Biophys Res Commun. 1997;240:68–74.

    Article  CAS  PubMed  Google Scholar 

  13. Yen TC, Chen YS, King KL, Yeh SH, Wei YH. Liver mitochondrial respiratory functions decline with age. Biochem Biophys Res Commun. 1989;165:944–1003.

    Article  CAS  PubMed  Google Scholar 

  14. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. 1989;1:637–9.

    Article  CAS  PubMed  Google Scholar 

  15. Mammone T, Gan D, Foyouzi-Youssefi R. Apoptotic cell death increases with senescence in normal human dermal fibroblast cultures. Cell Biol Int. 2006;30:903–9.

    Article  CAS  PubMed  Google Scholar 

  16. Greco M, Villani G, Mazzucchelli F, et al. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003;17:1706–8.

    CAS  PubMed  Google Scholar 

  17. Lenz H, Schmidt M, Welge V, et al. The creatine kinase system in human skin: protective effects of creatine against oxidative and UV damage in vitro and in vivo. J Invest Dermatol. 2005;124:443–52.

    Article  CAS  PubMed  Google Scholar 

  18. Paz ML, Gonzalez Maglio DH, Weill FS, Bustamante J, Leoni J. Mitochondrial dysfunction and cellular stress progression after ultraviolet B irradiation in human keratinocytes. Photodermatol Photoimmunol Photomed. 2008;24:115–22.

    Article  CAS  PubMed  Google Scholar 

  19. Jongkind JF, Verkerk A, Poot M. Glucose flux through the hexose monophosphate shunt and NADP(H) levels during in vitro ageing of human skin fibroblasts. Gerontology. 1987;33:281–6.

    Article  CAS  PubMed  Google Scholar 

  20. Stucker M, Struk A, Altmeyer P, et al. The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol. 2002;538:985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ronquist G, Andersson A, Bendsoe N, Falck B. Human epidermal energy metabolism is functionally anaerobic. Exp Dermatol. 2003;12:572–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hornig-Do HT, von Kleist-Retzow JC, Lanz K, et al. Human epidermal keratinocytes accumulate superoxide due to low activity of Mn-SOD, leading to mitochondrial functional impairment. J Invest Dermatol. 2007;127:1084–93.

    Article  CAS  PubMed  Google Scholar 

  23. Dzeja PP, Terzic A. Phosphotransfer networks and cellular energetics. J Exp Biol. 2003;206:2039–47.

    Article  CAS  PubMed  Google Scholar 

  24. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–62.

    Article  CAS  PubMed  Google Scholar 

  25. Blatt T, Lenz H, Koop U, et al. Stimulation of skin’s energy metabolism provides multiple benefits for mature human skin. Biofactors. 2005;25:179–85.

    Article  CAS  PubMed  Google Scholar 

  26. Wilken B, Ramirez JM, Probst I, Richter DW, Hanefeld F. Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res. 1998;43:8–14.

    Article  CAS  PubMed  Google Scholar 

  27. Bessman SP. The creatine phosphate energy shuttle--the molecular asymmetry of a “pool”. Anal Biochem. 1987;161:519–23.

    Article  CAS  PubMed  Google Scholar 

  28. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(Pt 1):21–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wyss M, Smeitink J, Wevers RA, Wallimann T. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta. 1992;1102:119–66.

    Article  CAS  PubMed  Google Scholar 

  30. Schlattner U, Mockli N, Speer O, Werner S, Wallimann T. Creatine kinase and creatine transporter in normal, wounded, and diseased skin. J Invest Dermatol. 2002;118:416–23.

    Article  CAS  PubMed  Google Scholar 

  31. Zemtsov A. Skin phosphocreatine. Skin Res Technol. 2007;13:115–8.

    Article  PubMed  Google Scholar 

  32. Snow RJ, Murphy RM. Creatine and the creatine transporter: a review. Mol Cell Biochem. 2001;224:169–81.

    Article  CAS  PubMed  Google Scholar 

  33. Speer O, Neukomm LJ, Murphy RM, et al. Creatine transporters: a reappraisal. Mol Cell Biochem. 2004;256–257:407–24.

    Article  PubMed  Google Scholar 

  34. McCully KK, Forciea MA, Hack LM, et al. Muscle metabolism in older subjects using 31P magnetic resonance spectroscopy. Can J Physiol Pharmacol. 1991;69:576–80.

    Article  CAS  PubMed  Google Scholar 

  35. Steinhagen-Thiessen E, Hilz H. The age-dependent decrease in creatine kinase and aldolase activities in human striated muscle is not caused by an accumulation of faulty proteins. Mech Ageing Dev. 1976;5:447–57.

    Article  CAS  PubMed  Google Scholar 

  36. Verzar F, Ermini M. Decrease of creatine-phosphate restitution of muscle in old age and the influence of glucose. Gerontologia. 1970;16:223–30.

    Article  CAS  PubMed  Google Scholar 

  37. Bogatskaia LN, Shegera VA. Creatine kinase activity and isoenzymic spectrum of myocardium creatine kinase in rats of different age. Ukr Biokhim Zh. 1981;53:71–4.

    CAS  PubMed  Google Scholar 

  38. Ponticos M, Lu QL, Morgan JE, et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 1998;17:1688–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stachowiak O, Schlattner U, Dolder M, Wallimann T. Oligomeric state and membrane binding behaviour of creatine kinase isoenzymes: implications for cellular function and mitochondrial structure. Mol Cell Biochem. 1998;184:141–51.

    Article  CAS  PubMed  Google Scholar 

  40. Chung JH, Eun HC. Angiogenesis in skin aging and photoaging. J Dermatol. 2007;34:593–600.

    Article  CAS  PubMed  Google Scholar 

  41. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993;90:7915–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  43. Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci U S A. 1994;91:10771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei YH, Lu CY, Wei CY, Ma YS, Lee HC. Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol. 2001;44:1–11.

    CAS  PubMed  Google Scholar 

  45. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    CAS  PubMed  Google Scholar 

  46. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30.

    Article  CAS  PubMed  Google Scholar 

  47. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article  CAS  PubMed  Google Scholar 

  48. Stadtman ER. Protein oxidation and aging. Science. 1992;257:1220–4.

    Article  CAS  PubMed  Google Scholar 

  49. Huber LA, Xu QB, Jurgens G, et al. Correlation of lymphocyte lipid composition membrane microviscosity and mitogen response in the aged. Eur J Immunol. 1991;21:2761–5.

    Article  CAS  PubMed  Google Scholar 

  50. Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med. 2004;37:768–84.

    Article  CAS  PubMed  Google Scholar 

  51. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  52. Sohal RS. Hydrogen peroxide production by mitochondria may be a biomarker of aging. Mech Ageing Dev. 1991;60:189–98.

    Article  CAS  PubMed  Google Scholar 

  53. Mori A, Utsumi K, Liu J, Hosokawa M. Oxidative damage in the senescence-accelerated mouse. Ann N Y Acad Sci. 1998;854:239–50.

    Article  CAS  PubMed  Google Scholar 

  54. Chiba Y, Yamashita Y, Ueno M, et al. Cultured murine dermal fibroblast-like cells from senescence-accelerated mice as in vitro models for higher oxidative stress due to mitochondrial alterations. J Gerontol A Biol Sci Med Sci. 2005;60:1087–98.

    Article  PubMed  Google Scholar 

  55. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.

    Article  CAS  PubMed  Google Scholar 

  56. Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T. Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun. 1991;179:1023–9.

    Article  CAS  PubMed  Google Scholar 

  57. Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993;34:609–16.

    Article  CAS  PubMed  Google Scholar 

  58. Ames BN, Shigenaga MK, Gold LS. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect. 1993;5 Suppl 101:35–44.

    Article  Google Scholar 

  59. Sohal RS, Dubey A. Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radic Biol Med. 1994;16:621–6.

    Article  CAS  PubMed  Google Scholar 

  60. Laganiere S, Yu BP. Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology. 1993;39:7–18.

    Article  CAS  PubMed  Google Scholar 

  61. Dumas M, Maftah A, Bonte F, et al. Flow cytometric analysis of human epidermal cell ageing using two fluorescent mitochondrial probes. C R Acad Sci III. 1995;318:191–7.

    CAS  PubMed  Google Scholar 

  62. Paradies G, Ruggiero FM. Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim Biophys Acta. 1990;1016:207–12.

    Article  CAS  PubMed  Google Scholar 

  63. Paradies G, Ruggiero FM. Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch Biochem Biophys. 1991;284:332–7.

    Article  CAS  PubMed  Google Scholar 

  64. Ruggiero FM, Cafagna F, Petruzzella V, Gadaleta MN, Quagliariello E. Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem. 1992;59:487–91.

    Article  CAS  PubMed  Google Scholar 

  65. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol. 2007;47:143–83.

    Article  CAS  PubMed  Google Scholar 

  66. Ha MK, Chung KY, Bang D, Park YK, Lee KH. Proteomic analysis of the proteins expressed by hydrogen peroxide treated cultured human dermal microvascular endothelial cells. Proteomics. 2005;5:1507–19.

    Article  CAS  PubMed  Google Scholar 

  67. Scharffetter-Kochanek K, Wlaschek M, Brenneisen P, et al. UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem. 1997;378:1247–57.

    CAS  PubMed  Google Scholar 

  68. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22:269–85.

    Article  CAS  PubMed  Google Scholar 

  69. Davies KJ. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life. 1999;48:41–7.

    Article  CAS  PubMed  Google Scholar 

  70. Bladier C, Wolvetang EJ, Hutchinson P, de Haan JB, Kola I. Response of a primary human fibroblast cell line to H2O2: senescence-like growth arrest or apoptosis? Cell Growth Differ. 1997;8:589–98.

    CAS  PubMed  Google Scholar 

  71. Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A. 1994;91:4130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Campisi J. The role of cellular senescence in skin aging. J Investig Dermatol Symp Proc. 1998;3:1–5.

    CAS  PubMed  Google Scholar 

  73. Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992;256:628–32.

    Article  CAS  PubMed  Google Scholar 

  74. Pang CY, Lee HC, Yang JH, Wei YH. Human skin mitochondrial DNA deletions associated with light exposure. Arch Biochem Biophys. 1994;312:534–8.

    Article  CAS  PubMed  Google Scholar 

  75. Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet. 1989;1:642–5.

    Article  CAS  PubMed  Google Scholar 

  76. Richter C. Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol. 1995;27:647–53.

    Article  CAS  PubMed  Google Scholar 

  77. Piko L, Hougham AJ, Bulpitt KJ. Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev. 1988;43:279–93.

    Article  CAS  PubMed  Google Scholar 

  78. Cortopassi GA, Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990;18:6927–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Eshaghian A, Vleugels RA, Canter JA, et al. Mitochondrial DNA deletions serve as biomarkers of aging in the skin, but are typically absent in nonmelanoma skin cancers. J Invest Dermatol. 2006;126:336–44.

    Article  CAS  PubMed  Google Scholar 

  80. Porteous WK, James AM, Sheard PW, et al. Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur J Biochem. 1998;257:192–201.

    Article  CAS  PubMed  Google Scholar 

  81. Shoffner JM, Lott MT, Voljavec AS, et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A. 1989;86:7952–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schroeder P, Gremmel T, Berneburg M, Krutmann J. Partial depletion of mitochondrial DNA from human skin fibroblasts induces a gene expression profile reminiscent of photoaged skin. J Invest Dermatol. 2008;128:2297–303.

    Article  CAS  PubMed  Google Scholar 

  83. Berneburg M, Plettenberg H, Medve-Konig K, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004;122:1277–83.

    Article  CAS  PubMed  Google Scholar 

  84. Yang JH, Lee HC, Wei YH. Photoageing-associated mitochondrial DNA length mutations in human skin. Arch Dermatol Res. 1995;287:641–8.

    Article  CAS  PubMed  Google Scholar 

  85. Birket MJ, Passos JF, von Zglinicki T, Birch-Machin MA. The relationship between the aging- and photo-dependent T414G mitochondrial DNA mutation with cellular senescence and reactive oxygen species production in cultured skin fibroblasts. J Invest Dermatol. 2009;129(6):1361–6.

    Article  CAS  PubMed  Google Scholar 

  86. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8:523–39.

    Article  CAS  PubMed  Google Scholar 

  87. Wei YH, Lee CF, Lee HC, et al. Increases of mitochondrial mass and mitochondrial genome in association with enhanced oxidative stress in human cells harboring 4,977 BP-deleted mitochondrial DNA. Ann N Y Acad Sci. 2001;928:97–112.

    Article  CAS  PubMed  Google Scholar 

  88. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res. 1999;423:11–21.

    Article  CAS  PubMed  Google Scholar 

  89. Berneburg M, Grether-Beck S, Kurten V, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999;274:15345–9.

    Article  CAS  PubMed  Google Scholar 

  90. Kueper T, Grune T, Prahl S, et al. Vimentin is the specific target in skin glycation. Structural prerequisites, functional consequences, and role in skin aging. J Biol Chem. 2007;282:23427–36.

    Article  CAS  PubMed  Google Scholar 

  91. Hipkiss AR. Does chronic glycolysis accelerate aging? Could this explain how dietary restriction works? Ann N Y Acad Sci. 2006;1067:361–8.

    Article  CAS  PubMed  Google Scholar 

  92. Alikhani Z, Alikhani M, Boyd CM, et al. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways. J Biol Chem. 2005;280:12087–95.

    Article  CAS  PubMed  Google Scholar 

  93. Kasper M, Funk RH. Age-related changes in cells and tissues due to advanced glycation end products (AGEs). Arch Gerontol Geriatr. 2001;32:233–43.

    Article  CAS  PubMed  Google Scholar 

  94. Rugolo M, Lenaz G. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution. J Bioenerg Biomembr. 1987;19:705–18.

    Article  CAS  PubMed  Google Scholar 

  95. Scaduto Jr RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76:469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Koopman WJ, Visch HJ, Smeitink JA, Willems PH. Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A. 2006;69:1–12.

    Article  PubMed  Google Scholar 

  97. Plasek J, Vojtiskova A, Houstek J. Flow-cytometric monitoring of mitochondrial depolarisation: from fluorescence intensities to millivolts. J Photochem Photobiol B. 2005;78:99–108.

    Article  CAS  PubMed  Google Scholar 

  98. Distelmaier F, Koopman WJ, Testa ER, et al. Life cell quantification of mitochondrial membrane potential at the single organelle level. Cytometry A. 2008;73:129–38.

    Article  PubMed  Google Scholar 

  99. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′6,6′-tetrachloro-1,1′3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem Biophys Res Commun. 1993;197:40–5.

    Article  CAS  PubMed  Google Scholar 

  100. Hagens R, Khabiri F, Schreiner V, et al. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission measurement. II: biological validation on ultraviolet A-stressed skin. Skin Res Technol. 2008;14:112–20.

    PubMed  Google Scholar 

  101. Khabiri F, Hagens R, Smuda C, et al. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement. I: mechanisms of UPE of biological materials. Skin Res Technol. 2008;14:103–11.

    PubMed  Google Scholar 

  102. Vandenberghe K, Goris M, Van Hecke P, et al. Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol. 1997;83:2055–63.

    CAS  PubMed  Google Scholar 

  103. Daly MM, Seifter S. Uptake of creatine by cultured cells. Arch Biochem Biophys. 1980;203:317–24.

    Article  CAS  PubMed  Google Scholar 

  104. Meyer LE, Machado LB, Santiago AP, et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem. 2006;281:37361–71.

    Article  CAS  PubMed  Google Scholar 

  105. Lenz H, Schmidt M, Welge V, et al. Inhibition of cytosolic and mitochondrial creatine kinase by siRNA in HaCaT- and HeLaS3-cells affects cell viability and mitochondrial morphology. Mol Cell Biochem. 2007;306:153–62.

    Article  CAS  PubMed  Google Scholar 

  106. O’Gorman E, Beutner G, Dolder M, et al. The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 1997;414:253–7.

    Article  PubMed  Google Scholar 

  107. Brdiczka D, Beutner G, Ruck A, Dolder M, Wallimann T. The molecular structure of mitochondrial contact sites. Their role in regulation of energy metabolism and permeability transition. Biofactors. 1998;8:235–42.

    Article  CAS  PubMed  Google Scholar 

  108. Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T. Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem. 2003;278:17760–6.

    Article  CAS  PubMed  Google Scholar 

  109. Dolder M, Wendt S, Wallimann T. Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage. Biol Signals Recept. 2001;10:93–111.

    Article  CAS  PubMed  Google Scholar 

  110. Berneburg M, Gremmel T, Kurten V, et al. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol. 2005;125:213–20.

    CAS  PubMed  Google Scholar 

  111. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20:591–8.

    Article  CAS  PubMed  Google Scholar 

  112. McLennan HR, Degli EM. The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr. 2000;32:153–62.

    Article  CAS  PubMed  Google Scholar 

  113. Lopez-Lluch G, Barroso MP, Martin SF, et al. Role of plasma membrane coenzyme Q on the regulation of apoptosis. Biofactors. 1999;9:171–7.

    Article  CAS  PubMed  Google Scholar 

  114. Mellors A, Tappel AL. The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. J Biol Chem. 1966;241:4353–6.

    CAS  PubMed  Google Scholar 

  115. Frei B, Kim MC, Ames BN. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci U S A. 1990;87:4879–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lass A, Kwong L, Sohal RS. Mitochondrial coenzyme Q content and aging. Biofactors. 1999;9:199–205.

    Article  CAS  PubMed  Google Scholar 

  117. Hoppe U, Bergemann J, Diembeck W, et al. Coenzyme Q10, a cutaneous antioxidant and energizer. Biofactors. 1999;9:371–8.

    Article  CAS  PubMed  Google Scholar 

  118. Podda M, Traber MG, Weber C, Yan LJ, Packer L. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic Biol Med. 1998;24:55–65.

    Article  CAS  PubMed  Google Scholar 

  119. Kim DW, Hwang IK, Yoo KY, et al. Coenzyme Q_{10} effects on manganese superoxide dismutase and glutathione peroxidase in the hairless mouse skin induced by ultraviolet B irradiation. Biofactors. 2007;30:139–47.

    Article  CAS  PubMed  Google Scholar 

  120. Stab F, Wolber R, Blatt T, Keyhani R, Sauermann G. Topically applied antioxidants in skin protection. Methods Enzymol. 2000;319:465–78.

    Article  CAS  PubMed  Google Scholar 

  121. Hadshiew IM, Treder-Conrad C, v Bulow R, et al. Polymorphous light eruption (PLE) and a new potent antioxidant and UVA-protective formulation as prophylaxis. Photodermatol Photoimmunol Photomed. 2004;20:200–4.

    Article  CAS  PubMed  Google Scholar 

  122. Rippke F, Wendt G, Bohnsack K, et al. Results of photoprovocation and field studies on the efficacy of a novel topically applied antioxidant in polymorphous light eruption. J Dermatolog Treat. 2001;12:3–8.

    Article  CAS  PubMed  Google Scholar 

  123. Wolber R, Stab F, Max H, et al. Alpha-glucosylrutin, a highly effective flavonoid for protection against oxidative stress. J Dtsch Dermatol Ges. 2004;2:580–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Blatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Blatt, T., Wenck, H., Wittern, KP. (2017). Alterations of Energy Metabolism in Cutaneous Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics