Skip to main content

Hyaluronan and the Process of Aging in Skin

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Hyaluronan is a major component of the extracellular matrix of skin and important in the metabolism of both epidermis and dermis. Hyaluronan is responsible for hydration, nutrient exchange, and protects against free radical damage via a multitude of signaling pathways. It is also involved in basic biological processes such as cell renewal, differentiation, and motility. An overview is provided here that provides recent information, bringing up-to-date advances in hyaluronan and matrix biology with a particular emphasis on the process of aging in human skin. The differences between hyaluronan applied exogenously and that occurring naturally in the body are articulated. A brief history is also provided of various commercial hyaluronan-containing skin-care products, including topical applications, as injectable skin fillers, and in nanoparticle delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stern R, Maibach HI. Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin Dermatol. 2008;26:106–22.

    Article  PubMed  Google Scholar 

  2. Stern R. Hyaluronan: key to skin moisturization. In: Loden M, Maibach HI, editors. Dry skin and moisturizers: chemistry and function. 2nd ed. Boca Raton: CRC Press; 2005. p. 245–78.

    Google Scholar 

  3. Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.

    CAS  PubMed  Google Scholar 

  4. Laurent TC, Laurent UB, Fraser JR. Serum hyaluronan as a disease marker. Ann Med. 1996;28:241–53.

    Article  CAS  PubMed  Google Scholar 

  5. Laurent TC, Laurent UB, Fraser JR. The structure and function of hyaluronan: an overview. Immunol Cell Biol. 1996;74:1–7.

    Article  Google Scholar 

  6. Toole BP. Hyaluronan in morphogenesis. Semin Cell Dev Biol. 2001;12:79–87.

    Article  CAS  PubMed  Google Scholar 

  7. Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton stealth molecule. Curr Opin Cell Biol. 2000;12:581–6.

    Article  CAS  PubMed  Google Scholar 

  8. Aya K, Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen. 2014;22:579–93.

    Article  PubMed  Google Scholar 

  9. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91:221–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61.

    Article  CAS  PubMed  Google Scholar 

  11. Meyer LJ, Stern R. Age-dependent changes of hyaluronan in human skin. J Invest Dermatol. 1994;102:385–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lin W, Shuster S, Maibach HI, Stern R. Patterns of hyaluronan staining are modified by fixation techniques. J Histochem Cytochem. 1997;45:1157–63.

    Article  CAS  PubMed  Google Scholar 

  13. Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand. 1988;134:405–11.

    Article  CAS  PubMed  Google Scholar 

  14. Lamberg SI, Yuspa SH, Hascall VC. Synthesis of hyaluronic acid is decreased and synthesis of proteoglycans is increased when cultured mouse epidermal cells differentiate. J Invest Dermatol. 1986;86:659–67.

    Article  CAS  PubMed  Google Scholar 

  15. Tammi R, Säämänen AM, Maibach HI, Tammi M. Degradation of newly synthesized high molecular mass hyaluronan in the epidermal and dermal compartments of human skin in organ culture. J Invest Dermatol. 1991;97:126–30.

    Article  CAS  PubMed  Google Scholar 

  16. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+−H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279:26991–7007.

    Article  CAS  PubMed  Google Scholar 

  17. Oliferenko S, Paiha K, Harder T, Gerke V, Schwärzler C, Schwarz H, Beug H, Günthert U, Huber LA. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J Cell Biol. 1999;146:843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jokela TA, Lindgren A, Rilla K, Maytin E, Hascall VC, Tammi RH, Tammi MI. Induction of hyaluronan cables and monocyte adherence in epidermal keratinocytes. Connect Tissue Res. 2008;49:115–9.

    Article  CAS  PubMed  Google Scholar 

  19. Akazawa Y, Sayo T, Sugiyama Y, Sato T, Akimoto N, Ito A, Inoue S. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts. Connect Tissue Res. 2011;52:322–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bertheim U, Engström-Laurent A, Hofer PA, Hallgren P, Asplund J, Hellström S. Loss of hyaluronan in the basement membrane zone of the skin correlates to the degree of stiff hands in diabetic patients. Acta Derm Venereol. 2002;82:329–34.

    Article  CAS  PubMed  Google Scholar 

  21. Gu H, Huang L, Wong YP, Burd A. HA modulation of epidermal morphogenesis in an organotypic keratinocyte-fibroblast co-culture model. Exp Dermatol. 2010;19:336–9.

    Article  Google Scholar 

  22. Stern A, Stern R. Absence of skin rash in Goodpasture’s syndrome: the hyaluronan effect. Med Hypotheses. 2014;83:769–71.

    Article  CAS  PubMed  Google Scholar 

  23. McBride WH, Bard JB. Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. J Exp Med. 1979;149:507–15.

    Article  CAS  PubMed  Google Scholar 

  24. Delmage JM, Powars DR, Jaynes PK, Allerton SE. The selective suppression of immunogenicity by hyaluronic acid. Ann Clin Lab Sci. 1986;16:303–10.

    CAS  PubMed  Google Scholar 

  25. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol. 2006;85:699–715.

    Article  CAS  PubMed  Google Scholar 

  26. Prusova A, Smejkolova D, Chytil M, Velebny V, Kucerik J. An alternative DSC (differential scanning colorimetry) approach to study the hydration of hyaluronan. Carbohydr Polym. 2010;52:498–503.

    Article  Google Scholar 

  27. Hargitai I, Hargittai M. Molecular structure of hyaluronan: an introduction. Struct Chem. 2008;19:697–717.

    Article  Google Scholar 

  28. Tzellos TG, Klagas I, Vahtsevanos K, Triaridis S, Printza A, Kyrgidis A, Karakiulakis G, Zouboulis CC, Papakonstantinou E. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp Dermatol. 2009;18:1028–35.

    Article  CAS  PubMed  Google Scholar 

  29. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem. 1999;274:25085–92.

    Article  CAS  PubMed  Google Scholar 

  30. Weigel PH, Hascall VC, Tammi M. Hyaluronan synthases. J Biol Chem. 1997;272:13997–4000.

    Article  CAS  PubMed  Google Scholar 

  31. Stern R, Jedrzejas MJ. Hyaluronidases: their genomics, structures, and mechanisms of action. Chem Rev. 2006;106:818–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gasingirwa MC, Thirion J, Mertens-Strijthagen J, Wattiaux-De Coninck S, Flamion B, Wattiaux R, Jadot M. Endocytosis of hyaluronidase-1 by the liver. Biochem J. 2010;430:305–13.

    Article  CAS  PubMed  Google Scholar 

  33. de la Motte C, Nigro J, Vasanji A, Rho H, Kessler S, Bandyopadhyay S, Danese S, Fiocchi C, Stern R. Platelet-derived hyaluronidase 2 cleaves hyaluronan into fragments that trigger monocyte-mediated production of proinflammatory cytokines. Am J Pathol. 2009;174:2254–64.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stern R. Devising a pathway for hyaluronan catabolism. Are we there yet? Glycobiology. 2003;13:105–15.

    Article  Google Scholar 

  35. Shearer J, Graham TE. New perspectives on the storage and organization of muscle glycogen. Can J Appl Physiol. 2002;27:179–203.

    Article  CAS  PubMed  Google Scholar 

  36. Mian N. Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts. Biochem J. 1986;237:333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mian N. Characterization of a high-Mr plasma-membrane-bound protein and assessment of its role as a constituent of hyaluronate synthase complex. Biochem J. 1986;237:343–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Philipson LH, Schwartz NB. Subcellular localization of hyaluronate synthetase in oligodendroglioma cells. J Biol Chem. 1984;259:5017–23.

    CAS  PubMed  Google Scholar 

  39. Philipson LH, Westley J, Schwartz NB. Effect of hyaluronidase treatment of intact cells on hyaluronate synthetase activity. Biochemistry. 1985;24:7899–906.

    Article  CAS  PubMed  Google Scholar 

  40. Larnier C, Kerneur C, Robert L, Moczar M. Effect of testicular hyaluronidase on hyaluronate synthesis by human skin fibroblasts in culture. Biochim Biophys Acta. 1989;1014:145–52.

    Article  CAS  PubMed  Google Scholar 

  41. Stern R, Shuster S, Wiley TS, Formby B. Hyaluronidase can modulate expression of CD44. Exp Cell Res. 2001;266:167–76.

    Article  CAS  PubMed  Google Scholar 

  42. Dai G, Freudenberger T, Zipper P, Melchior A, Grether-Beck S, Rabausch B, de Groot J, Twarock S, Hanenberg H, Homey B, Krutmann J, Reifenberger J, Fischer JW. Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol. 2007;171:1451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Röck K, Fischer K, Fischer JW. Hyaluronan used for intradermal injections is incorporated into the pericellular matrix and promotes proliferation in human skin fibroblasts in vitro. Dermatology. 2010;221:19–28.

    Article  Google Scholar 

  44. Hašová M, Crhák T, Safránková B, Dvořáková J, Muthný T, Velebný V, Kubala L. Hyaluronan minimizes effects of UV irradiation on human keratinocytes. Arch Dermatol Res. 2011;303:277–84.

    Article  PubMed  Google Scholar 

  45. Agren UM, Tammi RH, Tammi MI. Reactive oxygen species contribute to epidermal hyaluronan catabolism in human skin organ culture. Free Radic Biol Med. 1997;23:996–1001.

    Article  CAS  PubMed  Google Scholar 

  46. Mio K, Stern R. Inhibitors of the hyaluronidases. Matrix Biol. 2002;21:31–7.

    Article  CAS  PubMed  Google Scholar 

  47. Botzki A, Rigden DJ, Braun S, Nukui M, Salmen S, Hoechstetter J, Bernhardt G, Dove S, Jedrzejas MJ, Buschauer A. l-Ascorbic acid 6-hexadecanoate, a potent hyaluronidase inhibitor. X-ray structure and molecular modeling of enzyme-inhibitor complexes. J Biol Chem. 2004;279:45990–7.

    Article  CAS  PubMed  Google Scholar 

  48. Volpi N, Schiller J, Stern R, Soltes L. Role, metabolism, chemical modifications and applications of hyaluronan. Curr Med Chem. 2009;16:1718–45.

    Article  CAS  PubMed  Google Scholar 

  49. Oh JH, Kim YK, Jung JY, Shin JE, Chung JH. Changes in glycosamino-glycans and related proteoglycans in intrinsically aged human skin in vivo. Exp Dermatol. 2011;20:454–6.

    Article  PubMed  Google Scholar 

  50. Duan J, Kasper DL. Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology. 2011;21:401–9.

    Article  CAS  PubMed  Google Scholar 

  51. Passi A, Sadeghi P, Kawamura H, Anand S, Sato N, White LE, Hascall VC, Maytin EV. Hyaluronan suppresses epidermal differentiation in organotypic cultures of rat keratinocytes. Exp Cell Res. 2004;296:123–34.

    Article  CAS  PubMed  Google Scholar 

  52. Underhill CB. Hyaluronan is inversely correlated with the expression of CD44 in the dermal condensation of the embryonic hair follicle. J Invest Dermatol. 1993;101:820–6.

    Article  CAS  PubMed  Google Scholar 

  53. Barnes L, Tran C, Sorg O, Hotz R, Grand D, Carraux P, Didierjean L, Stamenkovic I, Saurat JH, Kaya G. Synergistic effect of hyaluronate fragments in retinaldehyde-induced skin hyperplasia which is a CD44-dependent phenomenon. PLoS One. 2010;5:e14372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Agren UM, Tammi M, Tammi R. Hydrocortisone regulation of hyaluronan metabolism in human skin organ culture. J Cell Physiol. 1997;164:240–8.

    Article  Google Scholar 

  55. Gebhardt C, Averbeck M, Diedenhofen N, Willenberg A, Anderegg U, Sleeman JP, Simon JC. Dermal hyaluronan is rapidly reduced by topical treatment with glucocorticoids. J Invest Dermatol. 2010;130:141–9.

    Article  CAS  PubMed  Google Scholar 

  56. Averbeck M, Gebhardt C, Anderegg U, Simon JC. Suppression of hyaluronan synthase 2 expression reflects the atrophogenic potential of glucocorticoids. Exp Dermatol. 2010;19:757–9.

    Article  CAS  PubMed  Google Scholar 

  57. Shah MG, Maibach HI. Estrogen and skin. An overview. Am J Clin Dermatol. 2001;2:143–50.

    Article  CAS  PubMed  Google Scholar 

  58. Bentley JP, Brenner RM, Linstedt AD, West NB, Carlisle KS, Rokosova BC, MacDonald N. Increased hyaluronate and collagen biosynthesis and fibroblast estrogen receptors in macaque sex skin. J Invest Dermatol. 1986;87:668–73.

    Article  CAS  PubMed  Google Scholar 

  59. Uzuka M, Nakajima K, Ohta S, Mori Y. Induction of hyaluronic acid synthetase by estrogen in the mouse skin. Biochim Biophys Acta. 1981;673:387–93.

    Article  CAS  PubMed  Google Scholar 

  60. Huey G, Moiin A, Stern R. Levels of [3H]glucosamine incorporation into hyaluronic acid by fibroblasts is modulated by culture conditions. Matrix. 1990;10:75–83.

    Article  CAS  PubMed  Google Scholar 

  61. Kao J, Huey G, Kao R, Stern R. Ascorbic acid stimulates production of glycosaminoglycans in cultured fibroblasts. Exp Mol Pathol. 1990;53:1–10.

    Article  CAS  PubMed  Google Scholar 

  62. Ditre CM, Griffin TD, Murphy GF, Sueki H, Telegan B, Johnson WC, Yu RJ, Van Scott EJ. Effects of alpha-hydroxy acids on photoaged skin: a pilot clinical, histologic, and ultrastructural study. J Am Acad Dermatol. 1996;34:187–95.

    Article  CAS  PubMed  Google Scholar 

  63. Fischer TC. A European evaluation of cosmetic treatment of facial voume loss with JuvédermTM VolumaTM in patients previously treated with Restylane SUB-QTM. J Cosmet Dermatol. 2010;9:291–6.

    Article  PubMed  Google Scholar 

  64. Elliott L, Rashid RM, Colome M. Hyaluronic acid filler for steroid atrophy. J Cosmet Dermatol. 2010;9:253–5.

    Article  PubMed  Google Scholar 

  65. Balazs EA. Hyaluronan-based composition and cosmetic formulations containing same. US Patent #4,303,676. 1981.

    Google Scholar 

  66. Phillips GO, du Plessis TA, Al-Assaf S, Williams PA. US Patent #6,610,810. 2003.

    Google Scholar 

  67. Phillips GO, du Plessis TA, Al-Assaf S, Williams PA. US Patent #6,841,644. 2005.

    Google Scholar 

  68. Yamaguchi Y, Nagasawa T, Nakamura N, Takenaga M, Mizoguchi M, Kawai S, Mizushima Y, Igarashi R. Successful treatment of photo-damaged skin of nano-scale atRA particles using a novel transdermal delivery. J Control Release. 2005;104:29–40.

    Article  CAS  PubMed  Google Scholar 

  69. Gupta S, Bansal R, Gupta S, Jindal N, Jindal A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol Online J. 2013;4:267–72.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Röck K, Grandoch M, Majora M, Krutmann J, Fischer JW. Collagen fragments inhibit hyaluronan synthesis in skin fibroblasts in response to UVB: new insights into mechanisms of matrix remodeling. J Biol Chem. 2011;286:18268–76.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Galeano M, Polito F, Bitto A, Irrera N, Campo GM, Avenoso A, Calò M, Cascio PL, Minutoli L, Barone M, Squadrito F, Altavilla D. Systemic administration of high-molecular weight hyaluronan stimulates wound healing in genetically diabetic mice. Biochim Biophys Acta. 2011;1812:752759.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rivers, D.A., Stern, R. (2017). Hyaluronan and the Process of Aging in Skin. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics