Skip to main content

Platinum and Palladium Nanoparticles Regulate the Redox Balance and Protect Against Age-Related Skin Changes in Mice

  • Reference work entry
  • First Online:
  • 267 Accesses

Abstract

Skin aging is defined by two skin phenotypes: photoaging-induced hypertrophy and intrinsic aging-associated atrophy. Accumulating evidence suggests that impaired reactive oxygen species metabolism induces oxidative damage and causes age-related changes in the skin. To prevent the morphological changes from oxidative injuries, cells possess multiple antioxidative components, such as superoxide dismutase (SOD), catalase, and glutathione peroxidase. Noble metal nanoparticles, such as platinum (Pt) and palladium (Pd) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. Pt nanoparticles show apparent SOD and catalase activity, while Pd nanoparticles exhibit weak activity. Interestingly, Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles, which helps to extend the SOD/catalase activity. A transdermal treatment with a mixture of Pt and Pd nanoparticles, called PAPLAL, completely reversed skin thinning associated with the normalization of lipid peroxidation in Sod1 −/− mice, which exhibited aging-like skin atrophy accompanied by the imbalance of extracellular matrix homeostasis. Furthermore, PAPLAL normalized the expression of extracellular matrix-related genes in the skin of Sod1 −/− mice. Other materials, such as vitamin C derivative, collagen peptides, and resveratrol, also attenuate age-related skin pathologies via the normalization of reactive oxygen species metabolism in the skin. These findings suggest that redox regulation in the skin is a beneficial strategy for the treatment of aging-related skin diseases caused by oxidative damage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Glogau RG. Physiologic and structural changes associated with aging skin. Dermatol Clin. 1997;15:555–9.

    Article  CAS  PubMed  Google Scholar 

  2. Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol. 1975;93:639–43.

    Article  CAS  PubMed  Google Scholar 

  3. Naylor EC, Watson RE, Sherratt MJ. Molecular aspects of skin ageing. Maturitas. 2011;69:249–56. doi:10.1016/j.maturitas.2011.04.011.

    Article  CAS  PubMed  Google Scholar 

  4. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  5. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009;47:344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med. 2003;35:236–56.

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe K, et al. Superoxide dismutase 1 loss disturbs intracellular redox signaling, resulting in global age-related pathological changes. Biomed Res Int. 2014;2014:140165. doi:10.1155/2014/140165.

    PubMed  PubMed Central  Google Scholar 

  8. Murakami K, et al. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid beta protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem. 2011;286:44557–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murakami K, et al. Cytoplasmic superoxide radical: a possible contributing factor to intracellular Abeta oligomerization in Alzheimer disease. Commun Integr Biol. 2013;5:255–8. doi:10.4161/cib.19548.

    Article  Google Scholar 

  10. Imamura Y, et al. Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci U S A. 2006;103:11282–7. doi:10.1073/pnas.0602131103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Uchiyama S, Shimizu T, Shirasawa T. CuZn-SOD deficiency causes ApoB degradation and induces hepatic lipid accumulation by impaired lipoprotein secretion in mice. J Biol Chem. 2006;281:31713–9. doi:10.1074/jbc.M603422200.

    Article  CAS  PubMed  Google Scholar 

  12. Kondo Y, et al. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis. FEBS Open Bio. 2014;4:522–32. doi:10.1016/j.fob.2014.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kojima T, et al. Age-related dysfunction of the lacrimal gland and oxidative stress: evidence from the Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice. Am J Pathol. 2012;180:1879–96.

    Article  CAS  PubMed  Google Scholar 

  14. Ibrahim OM, et al. Oxidative stress induced age dependent meibomian gland dysfunction in cu, zn-superoxide dismutase-1 (sod1) knockout mice. PLoS One. 2014;9:e99328. doi:10.1371/journal.pone.0099328.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Noda Y, Ota K, Shirasawa T, Shimizu T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biol Reprod. 2012;86:1–8.

    Article  PubMed  Google Scholar 

  16. Morikawa D, et al. Contribution of oxidative stress to the degeneration of rotator cuff entheses. J Shoulder Elbow Surg. 2014;23:628–35. doi:10.1016/j.jse.2014.01.041.

    Article  PubMed  Google Scholar 

  17. Murakami K, et al. Skin atrophy in cytoplasmic SOD-deficient mice and its complete recovery using a vitamin C derivative. Biochem Biophys Res Commun. 2009;382:457–61.

    Article  CAS  PubMed  Google Scholar 

  18. Shibuya S, et al. Collagen peptide and vitamin C additively attenuate age-related skin atrophy in Sod1-deficient mice. Biosci Biotechnol Biochem. 2014;78:1212–20.

    Article  CAS  PubMed  Google Scholar 

  19. Shibuya S, et al. Palladium and platinum nanoparticles attenuate aging-like skin atrophy via antioxidant activity in mice. PLoS One. 2014;9:e109288. doi:10.1371/journal.pone.0109288.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lewis L, Lewis N. Platinum-catalyzed hydrosilylation-colloid formation as the essential step. J Am Chem Soc. 1986;108:7228–31.

    Article  CAS  Google Scholar 

  21. Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem. 1998;22:1179–201.

    Article  CAS  Google Scholar 

  22. Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev. 2002;102:3757–78.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshihisa Y, et al. Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation. Exp Dermatol. 2010;19:1000–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kajita M, et al. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007;41:615–26.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshihisa Y, et al. SOD/catalase mimetic platinum nanoparticles inhibit heat-induced apoptosis in human lymphoma U937 and HH cells. Free Radic Res. 2011;45:326–35.

    Article  CAS  PubMed  Google Scholar 

  26. Shibuya S, Kinoshita K, Shimizu T. Protective effects of vitamin C derivatives on skin atrophy caused by Sod1 deficiency. In: Preedy BS, editor. Handbook of diet, nutrition and the skin. Wageningen: Academic; 2011. p. 351–64.

    Google Scholar 

  27. Shibuya S, Nojiri H, Morikawa D, Koyama H, Shimizu T. Protective effects of vitamin C on age-related bone and skin phenotypes caused by intracellular reactive oxygen species. In: Preedy BS, editor. Oxidative stress and dietary antioxidants. New York: Academic; 2014. p. 137–44.

    Google Scholar 

  28. Kim J, et al. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech Ageing Dev. 2008;129:322–31.

    Article  CAS  PubMed  Google Scholar 

  29. Takamiya M, et al. Neurological and pathological improvements of cerebral infarction in mice with platinum nanoparticles. J Neurosci Res. 2011;89:1125–33. doi:10.1002/jnr.22622.

    Article  CAS  PubMed  Google Scholar 

  30. Okamoto H, Horii K, Fujisawa A, Yamamoto Y. Oxidative deterioration of platinum nanoparticle and its prevention by palladium. Exp Dermatol. 2012;21:5–7.

    Article  CAS  PubMed  Google Scholar 

  31. Larese Filon F, Mauro M, Adami G, Bovenzi M, Crosera M. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol. 2015;72:310–22. doi:10.1016/j.yrtph.2015.05.005.

    Article  CAS  PubMed  Google Scholar 

  32. Bharti N, Shailendra SS, Naqvi F, Azam A. New palladium(II) complexes of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones. synthesis, spectral studies and in vitro anti-amoebic activity. Bioorg Med Chem. 2003;11:2923–9.

    Article  CAS  PubMed  Google Scholar 

  33. Brudzinska I, Mikata Y, Obata M, Ohtsuki C, Yano S. Synthesis, structural characterization, and antitumor activity of palladium(II) complexes containing a sugar unit. Bioorg Med Chem Lett. 2004;14:2533–6. doi:10.1016/j.bmcl.2004.02.095.

    Article  CAS  PubMed  Google Scholar 

  34. Li J, et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nat Chem. 2014;6:352–61. doi:10.1038/nchem.1887.

    Article  CAS  PubMed  Google Scholar 

  35. Elhusseiny AF, Hassan HH. Antimicrobial and antitumor activity of platinum and palladium complexes of novel spherical aramides nanoparticles containing flexibilizing linkages: structure–property relationship. Spectrochim Acta A Mol Biomol Spectrosc. 2013;103:232–45. doi:10.1016/j.saa.2012.10.063.

    Article  CAS  PubMed  Google Scholar 

  36. Verrecchia F, Mauviel A. TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal. 2004;16:873–80. doi:10.1016/j.cellsig.2004.02.007.

    Article  CAS  PubMed  Google Scholar 

  37. Beauchef G, et al. The p65 subunit of NF-kappaB inhibits COL1A1 gene transcription in human dermal and scleroderma fibroblasts through its recruitment on promoter by protein interaction with transcriptional activators (c-Krox, Sp1, and Sp3). J Biol Chem. 2012;287:3462–78. doi:10.1074/jbc.M111.286443.

    Article  CAS  PubMed  Google Scholar 

  38. Bigot N, et al. NF-kappaB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a -112/-61-bp region of the COL1A1 promoter in human skin fibroblasts. J Invest Dermatol. 2012;132:2360–7. doi:10.1038/jid.2012.164.

    Article  CAS  PubMed  Google Scholar 

  39. Kondo Y, Fukuda K, Adachi T, Nishida T. Inhibition by a selective IkappaB kinase-2 inhibitor of interleukin-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture. Invest Ophthalmol Vis Sci. 2008;49:4850–7. doi:10.1167/iovs.08-1897.

    Article  PubMed  Google Scholar 

  40. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. doi:10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tyner SD, et al. p53 mutant mice that display early ageing-associated phenotypes. Nature. 2002;415:45–53.

    Article  CAS  PubMed  Google Scholar 

  42. Ishizuka S. Creation of PAPLAL. Japan: Juseikai; 1956, In Japanese.

    Google Scholar 

  43. Tajima K, Watabe R, Kanaori K. Antioxidant activity of PAPLAL a colloidal mixture of Pt and Pd metal to superoxide anion radical as studied by quantitative spin trapping ESR measurements. Clin Phamacol Ther. 2005;15:635–42.

    Google Scholar 

  44. Tajima K, et al. Chemical reactivity of Pd-, and Pt-colloid involved in PAPLAL to solvated oxygen and hydroxyl radical. Clin Phamacol Ther. 2009;19:397–404.

    Google Scholar 

  45. Nojiri H, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011;26:2682–94.

    Article  CAS  PubMed  Google Scholar 

  46. Iuchi Y, et al. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochem J. 2007;402:219–27. doi:10.1042/BJ20061386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther. 2009;22:340–9. doi:10.1016/j.pupt.2008.12.015.

    Article  CAS  PubMed  Google Scholar 

  48. Rehman MU, Yoshihisa Y, Miyamoto Y, Shimizu T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm Res. 2012;61:1177–85. doi:10.1007/s00011-012-0512-0.

    Article  CAS  PubMed  Google Scholar 

  49. Watkinson AC, Bunge AL, Hadgraft J, Lane ME. Nanoparticles do not penetrate human skin – a theoretical perspective. Pharm Res. 2013;30:1943–6. doi:10.1007/s11095-013-1073-9.

    Article  CAS  PubMed  Google Scholar 

  50. Sonavane G, et al. In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B Biointerfaces. 2008;65:1–10. doi:10.1016/j.colsurfb.2008.02.013.

    Article  CAS  PubMed  Google Scholar 

  51. Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine. 2013;9:39–54. doi:10.1016/j.nano.2012.04.004.

    CAS  PubMed  Google Scholar 

  52. Gu H, Yu A, Chen H. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J Electroanal Chem. 2001;516:119–26.

    Article  CAS  Google Scholar 

  53. Sakaue Y, Kim J, Miyamoto Y. Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1. Int J Nanomedicine. 2010;5:687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Arora S, et al. Silver nanoparticles protect human keratinocytes against UVB radiation-induced DNA damage and apoptosis: potential for prevention of skin carcinogenesis. Nanomedicine. 2015;11:1265–75. doi:10.1016/j.nano.2015.02.024.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Massip L, et al. Vitamin C restores healthy aging in a mouse model for Werner syndrome. FASEB J. 2010;24:158–72.

    Article  PubMed  Google Scholar 

  56. Kato E, Tokunaga Y, Sakan F. Stilbenoids isolated from the seeds of Melinjo (Gnetum gnemon L.) and their biological activity. J Agric Food Chem. 2009;57:2544–9. doi:10.1021/jf803077p.

    Article  CAS  PubMed  Google Scholar 

  57. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5:493–506. doi:10.1038/nrd2060.

    Article  CAS  PubMed  Google Scholar 

  58. Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014;35:146–54. doi:10.1016/j.tips.2013.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Serravallo M, Jagdeo J, Glick SA, Siegel DM, Brody NI. Sirtuins in dermatology: applications for future research and therapeutics. Arch Dermatol Res. 2013;305:269–82. doi:10.1007/s00403-013-1320-2.

    Article  CAS  PubMed  Google Scholar 

  60. Watanabe K, Shibuya S, Ozawa Y, Izuo N, Shimizu T. Resveratrol derivative-rich melinjo seed extract attenuates skin atrophy in Sod1-deficient mice. Oxid Med Cell Longev. 2015;2015:391075. doi:10.1155/2015/391075.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Shibuya, S., Watanabe, K., Yokote, K., Shimizu, T. (2017). Platinum and Palladium Nanoparticles Regulate the Redox Balance and Protect Against Age-Related Skin Changes in Mice. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_120

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_120

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics