Skip to main content

Proteoglycans in Skin Aging

  • Reference work entry
  • First Online:
Book cover Textbook of Aging Skin

Abstract

Proteoglycans are ubiquitous macromolecules of extracellular matrix, cell surface, and some intracellular granules. They are composed of a glycoprotein core to which one or several glycosaminoglycan chains are attached by covalent linkage. More than 40 different genes encode proteoglycans. Most of them are expressed in skin cells. However, only some of the protein products have been confirmed to reside in skin.

Skin proteoglycans contribute to tissue hydration, resistance and resilience, molecular filtration. They also control cell behavior and cell–cell or cell–matrix interactions. Additionally, by their polyanionic properties, proteoglycans constitute the biological reservoir of many cytokines and growth factors. Such a diversity of functions supposes that any changes of their expression or structure during aging may perturb the tissue homeostasis significantly

In this chapter, we’ll review the different types of proteoglycans present in the skin and their main biological functions, with special interest to the alterations of these molecules during aging. The review will show that proteoglycans may play a major role in skin homeostasis and in its functional and architectural properties. Large areas remain, however, unknown at this time and many consequences on skin physiology have still to be investigated. Design of new experimental models, especially in vivo, will permit to better study the implication of proteoglycan alterations in the defects linked to skin aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou J, Haggerty JG, Milstone LM. Growth and differentiation regulate CD44 expression on human keratinocytes. In Vitro. 1999;35:228–35.

    CAS  Google Scholar 

  3. Esko JD, Zhang L. Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol. 1996;6:663–70.

    Article  CAS  PubMed  Google Scholar 

  4. http://www.ncbi.nlm.nih.gov/sites/entrez

  5. Bianco P, Fisher LW, Young MF, et al. Expression and localization of the two small proteoglycans, biglycan and decorin in developing human skeletal and non skeletal tissues. J Histochem Cytochem. 1990;38:1549–63.

    Article  CAS  PubMed  Google Scholar 

  6. Vélez-Delvalle C, Marsch-Moreno M, Castro-Muñozledo F, et al. Fibromodulin gene is expressed in human epidermal keratinocytes in culture and in human epidermis in vivo. Biochem Biophys Res Commun. 2008;371:420–4.

    Article  PubMed  CAS  Google Scholar 

  7. Zimmermann DR, Dours-Zimmermann MT, Schubert M, et al. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J Cell Biol. 1994;124:817–25.

    Article  CAS  PubMed  Google Scholar 

  8. Garrone R, Lethias C, Le Guellec D. Distribution of minor collagens during skin development. Microsc Res Tech. 1997;38:407–12.

    Article  CAS  PubMed  Google Scholar 

  9. Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol. 2006;7:265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ojeh N, Hiilesvuo K, Wärri A, et al. Ectopic expression of syndecan-1 in basal epidermis affects keratinocyte proliferation and wound re-epithelialization. J Invest Dermatol. 2008;128:26–34.

    Article  CAS  PubMed  Google Scholar 

  11. Filmus J, Capurro M, Rast J. Glypicans. Genome Biol. 2008;9:224.1–6.

    Article  CAS  Google Scholar 

  12. Kugelman LC, Ganguly S, Haggerty JG, et al. The core protein of epican, a heparan sulfate proteoglycan on keratinocytes, is an alternative form of CD44. J Invest Dermatol. 1992;99:886–91.

    Article  CAS  PubMed  Google Scholar 

  13. Quintanilla M, Ramirez JR, Pérez-Gómez E, et al. Expression of the TGF-beta coreceptor endoglin in epidermal keratinocytes and its dual role in multistage mouse skin carcinogenesis. Oncogene. 2003;22:5976–85.

    Article  CAS  PubMed  Google Scholar 

  14. Artuc M, Hermes B, Algermissen B, et al. Expression of prothrombin, thrombin and its receptors in human scars. Exp Dermatol. 2006;15:523–9.

    Article  CAS  PubMed  Google Scholar 

  15. Campoli MR, Chang CC, Kageshita T, et al. Human high molecular weight-melanoma-associated antigen (HMW-MAA). Crit Rev Immunol. 2004;24:267–96.

    Article  CAS  PubMed  Google Scholar 

  16. Kadoya K, Fukushi J, Matsumoto Y, et al. NG2 proteoglycan expression in mouse skin: altered postnatal skin development in the NG2 null mouse. J Histochem Cytochem. 2008;56:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujii N, Nagai YJ. Isolation and characterization of a proteodermatan sulfate from calf skin. J Biochem. 1981;90:1249–58.

    CAS  PubMed  Google Scholar 

  18. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindner J, Schönrock P, Nüssgen A, et al. Age-related changes in cell content (DNA) and glycosaminoglycan-degrading enzymes. Z Gerontol. 1986;19:190–205.

    CAS  PubMed  Google Scholar 

  20. Iozzo RV. The family of the small leucin-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol. 1997;32:141–74.

    Article  CAS  PubMed  Google Scholar 

  21. Schaefer L, Iozzo RV. Biological functions of the small leucin-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 2008;283:21305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ying S, Shiraishi A, Kao CW, et al. Characterization and expression of the mouse lumican gene. J Biol Chem. 1997;272:30306–13.

    Article  CAS  PubMed  Google Scholar 

  23. Corpuz L, Funderburgh JL, Funderburgh ML, et al. Molecular cloning and distribution of keratocan. Bovine corneal keratan sulfate proteoglycan 37A. J Biol Chem. 1996;271:839–47.

    Google Scholar 

  24. Neame PJ, Kay CJ. Small leucine-rich proteoglycans. In: Iozzo RV, editor. Proteoglycans: structure, biology and molecular interactions. New-York, Basel: Marcel Dekker; 2000. p. 201–35.

    Google Scholar 

  25. Ameye L, Young MF. Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy and corneal diseases. Glycobiology. 2002;12:107R–16.

    Article  CAS  PubMed  Google Scholar 

  26. Longas MO, Fleischmajer R. Immuno-electron microscopy of proteodermatan sulfate in human mid-dermis. Connect Tissue Res. 1985;13:117–25.

    Article  CAS  PubMed  Google Scholar 

  27. Bernstein FF, Fisher LW, Richard KL, et al. Differential expression of the versican and decorin genes in photo-aged and sun-protected skin. Lab Invest. 1995;72:662–9.

    CAS  PubMed  Google Scholar 

  28. Passi A, Albertini R, Campagnari F, De Luca G. Modifications of proteoglycans secreted into the growth medium by young and senescent human skin fibroblasts. FEBS Lett. 1997;402:286–90.

    Article  CAS  PubMed  Google Scholar 

  29. Carrino DH, Sorrell JM, Caplan AI. Age-related changes in the proteoglycans of human skin. Arch Biochem Biophys. 2000;373:91–101.

    Article  CAS  PubMed  Google Scholar 

  30. Carrino DA, Onnerfjord P, Sandy JD, et al. Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J Biol Chem. 2003;278:17566–72.

    Article  CAS  PubMed  Google Scholar 

  31. Ito Y, Takeuchi J, Yamamoto K, et al. Age differences in immunohistochemical localizations of large proteoglycan, PG-M/versican, and small proteoglycan, decorin, in the dermis of rats. Exp Anim. 2001;50:159–66.

    Article  CAS  PubMed  Google Scholar 

  32. Nomura Y, Abe Y, Ishii Y, et al. Structural changes in the glycosaminoglycan chain of rat skin decorin with growth. J Dermatol. 2003;30:655–64.

    Article  CAS  PubMed  Google Scholar 

  33. Nomura Y. Structural change in decorin with skin aging. Connect Tissue Res. 2006;47:249–55.

    Article  CAS  PubMed  Google Scholar 

  34. Lockner K, Gaemlich A, Südel KM, et al. Expression of decorin and collagens-I and -III in different layers of human skin in vivo: a laser capture microdissection study. Biogerontology. 2007;8:269–82.

    Article  CAS  Google Scholar 

  35. Kokenyesi R, Woessner Jr JF. Relationship between dilatation of the rat uterine cervix and small dermatan sulfate proteoglycan. Biol Reprod. 1990;42:87–97.

    Article  CAS  PubMed  Google Scholar 

  36. Vogel KG, Trotter JA. The effect of proteoglycans on the morphology of collagen fibrils formed in vitro. Coll Rel Res. 1987;7:105–14.

    Article  CAS  Google Scholar 

  37. Oh JH, Kim YK, Jung JY, et al. Changes in glycosaminoglycans and related proteoglycans in intrinsically aged human skin in vivo. Exp Dermatol. 2011;20:545–6.

    Article  Google Scholar 

  38. Li Y, Liu Y, Xia W, et al. Age-dependent alterations of decorin glycosaminoglycans in human skin. Sci Rep. 2013;3:2422.

    PubMed  PubMed Central  Google Scholar 

  39. Mondon P, Hillion M, Peschard O, et al. Evaluation of dermal extracellular matrix and epidermal-dermal junction modifications using matrix-assisted laser desorption/ionization mass spectrometric imaging, in vivo reflectance confocal microscopy, echography, and histology: effect of age and peptide applications. J Cosmet Dermatol. 2015;14(2):152–60.

    Article  PubMed  Google Scholar 

  40. Li Y, Xia W, Liu Y, et al. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase. PLoS One. 2013;8(8), e72563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corsi A, Xu T, Chen XD, et al. Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res. 2002;17(7):1180–9.

    Article  CAS  PubMed  Google Scholar 

  42. Scott PG, Dodd CM, Tredget EE, et al. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology. 1995;26(5):423–31.

    Article  CAS  PubMed  Google Scholar 

  43. Funderburgh JL, Conrad GW. Isoform of corneal keratan sulfate proteoglycan. J Biol Chem. 1990;265:8297–303.

    CAS  PubMed  Google Scholar 

  44. Grover J, Chen XN, Korenberg JR, Roughley PJ. The human lumican gene. Organization, chromosomal location, and expression in articular cartilage. J Biol Chem. 1995;270:21942–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chakravarti S, Magnuson T, Lass JH. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998;141:1277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vuillermoz B, Wegrowski Y, Contet-Audonneau JL, et al. Influence of aging on glycosaminoglycans and small leucine-rich proteoglycans production by skin fibroblasts. Mol Cell Biochem. 2005;277:63–72.

    Article  CAS  PubMed  Google Scholar 

  47. Yeh JT, Yeh LK, Jung SM, et al. Impaired skin wound healing in lumican-null mice. Br J Dermatol. 2010;163(6):1174–80.

    Article  CAS  PubMed  Google Scholar 

  48. Honardoust D, Varkey M, Marcoux Y, et al. Reduced decorin, fibromodulin, and transforming growth factor-β3 in deep dermis leads to hypertrophic scarring. J Burn Care Res. 2012;33(2):218–27.

    Article  PubMed  Google Scholar 

  49. Varkey M, Ding J, Tredget EE. Differential collagen-glycosaminoglycan matrix remodeling by superficial and deep dermal fibroblasts: potential therapeutic targets for hypertrophic scar. Biomaterials. 2011;32(30):7581–91.

    Article  CAS  PubMed  Google Scholar 

  50. Zheng Z, Lee KS, Zhang X, et al. Fibromodulin-deficiency alters temporospatial expression patterns of transforming growth factor-β ligands and receptors during adult mouse skin wound healing. PLoS One. 2014;9(6), e90817.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Stoff A, Rivera AA, Mathis JM, et al. Effect of adenoviral mediated overexpression of fibromodulin on human dermal fibroblasts and scar formation in full-thickness incisional wounds. J Mol Med (Berl). 2007;85(5):481–96.

    Article  CAS  Google Scholar 

  52. Dours-Zimmermann MT, Zimmermann DR. A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican. J Biol Chem. 1994;269:32992–8.

    CAS  PubMed  Google Scholar 

  53. Lemire JM, Braun KR, Maurel P, et al. versican/PG-M isoforms in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1999;19:1630–9.

    Article  CAS  PubMed  Google Scholar 

  54. Zhao X, Russell P. Versican splice variants in human trabecular meshwork and ciliary muscle. Mol Vis. 2005;12:603–8.

    Google Scholar 

  55. Erickson AC, Couchman JR. Basement membrane and interstitial proteoglycans produced by MDCK cells correspond to those expressed in the kidney cortex. Matrix Biol. 2001;19:769–78.

    Article  CAS  PubMed  Google Scholar 

  56. Knott A, Reuschlein K, Lucius R, et al. Deregulation of versican and elastin binding protein in solar elastosis. Biogerontology. 2009;10:181–90.

    Article  CAS  PubMed  Google Scholar 

  57. Hasegawa K, Yoneda M, Kuwabara H, et al. Versican, a major hyaluronan-binding component in the dermis loses its hyaluronan-binding ability in solar elastosis. J Invest Dermatol. 2007;127:1657–63.

    Article  CAS  PubMed  Google Scholar 

  58. Röck K, Meusch M, Fuchs N, et al. Estradiol protects dermal hyaluronan/versican matrix during photoaging by release of epidermal growth factor from keratinocytes. J Biol Chem. 2012;287(24):20056–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jackson RL, Busch SJ, Cardin AD. Glycosaminoglycans: molecular properties, protein interactions and role in physiological processes. Physiol Rev. 1991;71:481–539.

    CAS  PubMed  Google Scholar 

  60. Choi Y, Chung H, Jung H, et al. Syndecans as cell surface receptors: unique structure with functional diversity. Matrix Biol. 2011;30:93–9.

    Article  CAS  PubMed  Google Scholar 

  61. Multhaupt HA, Yoneda A, Whiteford JR, et al. Syndecan signaling: when, where and why? J Physiol Pharmacol Suppl. 2009;4:31–8.

    Google Scholar 

  62. Sanderson RD, Hinkes MT, Bernfield M. Syndecan-1, a cell-surface proteoglycan, changes in size and abundance when keratinocytes stratify. J Invest Dermatol. 1992;99:390–6.

    Article  CAS  PubMed  Google Scholar 

  63. Inki P, Larava H, Haapasalmi K, et al. Expression of syndecan-1 is induced by differentiation and suppressed by malignant transformation of human keratinocytes. Eur J Cell Biol. 1994;63:43–51.

    CAS  PubMed  Google Scholar 

  64. Elenius K, Vainio S, Laato M. Induced expression of syndecan in healing wounds. J Cell Biol. 1991;114:585–95.

    Article  CAS  PubMed  Google Scholar 

  65. Ojeh N, Hiilesvno K, Warri A. Ectopic expression of syndecan-1 in basal epidermis affects keratinocytes proliferation and wound re-epithelialization. J Invest Dermatol. 2008;128:26–34.

    Article  CAS  PubMed  Google Scholar 

  66. Stepp MA, Liu Y, Pal-Gosh S, et al. Reduced migration, altered matrix and enhanced TGF-β1 signaling are signatures of mouse keratinocytes lacking Sdc-1. J Cell Sci. 2007;120:2851–63.

    Article  CAS  PubMed  Google Scholar 

  67. Gallo R, Kim C, Kokenyesi R, et al. Syndecans -1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol. 1996;107:676–83.

    Article  CAS  PubMed  Google Scholar 

  68. Echtermeyer F, Streit M, Wilcox-Adelman S, et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan -4. J Clin Invest. 2001;107:R9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wegrowski Y, Danoux L, Contet-Audonneau JL, et al. Decreased syndecan-1 expression by human keratinocytes during skin aging. J Invest Dermatol. 2005;125:A5 (abstract).

    Google Scholar 

  70. Pauly G, Contet-Audonneau JL, Moussou P, et al. Small proteoglycans in the skin: new targets in the fight against skin aging. IFSCC Mag. 2008;11:21–9.

    CAS  Google Scholar 

  71. David G, Lories V, Decock V, et al. Molecular cloning of a phosphatidyl-inositol-anchored membrane heparan sulfate proteoglycan from human lung fibroblast. J Cell Biol. 1990;111:149–60.

    Article  Google Scholar 

  72. Litwack ED, Ivins JK, Kumbesar A. Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev Dyn. 1998;211:72–87.

    Article  CAS  PubMed  Google Scholar 

  73. Traister A, Shi W, Filmus J. Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J. 2008;410:503–11.

    Article  CAS  PubMed  Google Scholar 

  74. Boyd FJ, Cheifetz S, Andres J, et al. Transforming Growth Factor-beta receptors and binding proteoglycans. J Cell Sci Suppl. 1990;13:131–8.

    Article  CAS  PubMed  Google Scholar 

  75. Lopez-Casillas F, Payne HM, Andres JL, et al. Betaglycan can act as dual modulator of TGF-beta access to signalling receptors: mapping of ligand binding and GAG attachment sites. J Cell Biol. 1994;124:557–68.

    Article  CAS  PubMed  Google Scholar 

  76. Brown TA, Bouchard T, St John T, et al. Human keratinocytes express a new CD44 core protein (CD44E) as a heparan sulfate intrisic membrane proteoglycans with additional exons. J Cell Biol. 1991;113:207–21.

    Article  CAS  PubMed  Google Scholar 

  77. Tzellos TG, Sinopidis X, Kyrgidis A, et al. Differential hyaluronan homeostasis and expression of proteoglycans in juvenile and adult human skin. J Dermatol Sci. 2011;61:60–81.

    Article  CAS  Google Scholar 

  78. Tamiolakis D, Papadopoulos N, Anastasiadis P, et al. Expression of laminin, type IV collagen and fibronectin molecules is related to embryonal skin and epidermal appendage morphogenesis. Clin Exp Obstet Gynecol. 2001;28:179–82.

    CAS  PubMed  Google Scholar 

  79. David G. Integral membrane heparan sulfate proteoglycans. FASEB J. 1993;7:1023–30.

    CAS  PubMed  Google Scholar 

  80. Erickson AC, Couchman JR. Still more complexity in mammalian basement membranes. J Histochem Cytochem. 2000;48:1291–306.

    Article  CAS  PubMed  Google Scholar 

  81. Iozzo RV. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest. 2001;108:165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pineau N, Bernerd F, Cavezza A, et al. A new C-xylopyranoside derivative induces skin expression of glycosaminoglycans and heparan sulfate proteoglycans. Eur J Dermatol. 2008;18:36–40.

    CAS  PubMed  Google Scholar 

  83. Sok J, Pineau N, Dalko-Csiba M, et al. Improvement of the dermal epidermal junction in human reconstructed skin by a new c-xylopyranoside derivative. Eur J Dermatol. 2008;18:297–302.

    CAS  PubMed  Google Scholar 

  84. Isemura M, Sato N, Yamaguchi Y, et al. Isolation and characterization of fibronectin-binding proteoglycan carrying both heparan sulfate and dermatan sulfate chains from human placenta. J Biol Chem. 1987;262:8926–33.

    CAS  PubMed  Google Scholar 

  85. Iozzo RV, Hassell JR. Identification of the precursor protein for the heparan sulfate proteoglycan of human colon carcinoma cells and its post-translational modifications. Arch Biochem Biophys. 1989;269:239–49.

    Article  CAS  PubMed  Google Scholar 

  86. Iozzo RV, Cohen IR, Grässel S, Murdoch AD. The biology of perlecan: the multifaceted heparan sulfate proteoglycan of basement membranes and pericellular matrices. Biochem J. 1994;302:625–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murdoch AD, Liu B, Schwarting R, et al. Widespread expression of perlecan proteoglycan in basement membranes and extracellular matrices of human tissues as detected by a novel monoclonal antibody against domain III and by in situ hybridization. J Histochem Cytochem. 1994;42:239–49.

    Article  CAS  PubMed  Google Scholar 

  88. Brown JC, Sasaki T, Göhring W, et al. The C-terminal domain V of perlecan promotes beta-1 integrin-mediated cell adhesion, binds heparin, nidogen and fibulin-2 and can be modified by glycosaminoglycans. Eur J Biochem. 1997;250:39–46.

    Article  CAS  PubMed  Google Scholar 

  89. Arikawa-Hirasawa E, Yamada Y. Roles of perlecan in development and disease: studies in knockout mice and human disorders. Seikagaku. 2001;73:1257–61.

    CAS  PubMed  Google Scholar 

  90. Sher I, Zisman-Rozen S, Eliahu L, et al. Targeting perlecan in human keratinocytes reveals novel roles for perlecan in epidermal formation. J Biol Chem. 2006;281:5178–87.

    Article  CAS  PubMed  Google Scholar 

  91. Pain S, Dos Santos M, Gaydou A, et al. Restoration of both epithelial and endothelial perlecan/dystroglycan expressions by polygonum bistorta induces skin rejuvenation. IFSCC Mag. 2014;17:31–6.

    Google Scholar 

  92. Cole GJ, Halfter W. Agrin: an extracellular matrix heparan sulfate proteoglycan involved in cell interactions and synaptogenesis. Perspect Dev Neurobiol. 1996;3:359–3711.

    CAS  PubMed  Google Scholar 

  93. Hafter W, Dong S, Schurer B, et al. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem. 1998;372:25404–12.

    Article  Google Scholar 

  94. Elamaa H, Sormunen R, Rehn M, et al. Endostatin overexpression specifically in the lens and skin leads to cataract and ultrastructural alterations in basement membranes. Am J Pathol. 2005;166:221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Le Varlet B, Chaudagne C, Saunois A, et al. Age-related functional and structural changes in human dermo-epidermal junction components. J Invest Dermatol Symp Proc. 1998;3:172–9.

    Article  Google Scholar 

  96. Wassenhove-McCarthy DJ, McCarthy KJ. Molecular characterization of a novel basement membrane-associated proteoglycan, leprecan. J Biol Chem. 1999;274:25004–17.

    Article  CAS  PubMed  Google Scholar 

  97. Kaul SC, Sugihara T, Yoshida A, et al. Gros1, a potential growth suppressor on chromosome 1: its identity to basement membrane-associated proteoglycan, leprecan. Oncogene. 2000;19:3576–83.

    Article  CAS  PubMed  Google Scholar 

  98. Aravind L, Koonin EV (2001) The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol 2:RESEARCH0007.1-0007.8.

    Google Scholar 

  99. Lauer M, Scruggs B, Chen S, et al. Leprecan distribution in the developing and adult kidney. Kidney Int. 2007;72:82–91.

    Article  CAS  PubMed  Google Scholar 

  100. Ghiselli G, Siracusa LD, Iozzo RV. Complete cDNA cloning, genomic organization, chromosomal assignment, functional characterization of the promoter, and expression of the murine Bamacan gene. J Biol Chem. 1999;274:17384–93.

    Article  CAS  PubMed  Google Scholar 

  101. Wu RR, Couchman JR. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs. J Cell Biol. 1997;136:433–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amenta PS, Scivoletti NA, Newman N, et al. Proteoglycan-collagen XV in human tissues is seen linking banded fibers subjacent to the basement membrane. J Histochem Cytochem. 2005;53:165–76.

    Article  CAS  PubMed  Google Scholar 

  103. Myers JC, Dion AS, Abraham V, et al. Type XV collagen exhibits a widespread distribution in human tissues but a distinct localization in basement membrane zones. Cell Tiss Res. 1996;286:493–505.

    Article  CAS  Google Scholar 

  104. Ramchandran R, Dhanabal M, Volk R, et al. Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun. 1999;225:735–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Xavier Maquart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Maquart, FX., Brézillon, S., Wegrowski, Y. (2017). Proteoglycans in Skin Aging. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics