Skip to main content

Gravimetric Measurements, Gravity Anomalies, Geoid, Quasigeoid: Theoretical Background and Multiscale Modeling/Gravimetrische Messungen, Schwereanomalien, Geoid, Quasigeoid: Theoretischer Hintergrund und Multiskalenmodellierung

  • Living reference work entry
  • First Online:
Handbuch der Geodäsie

Abstract

The methodical aspects of gravimetry are investigated from observational as well as mathematical/physical point of view. Local gravimetric data sets are exploited to visualize multiscale features in geophysically relevant signature bands of gravity anomalies and quasigeoidal heights. Wavelet decorrelation is illustrated for a certain area of Rhineland-Palatinate.

Zusammenfassung

Die methodischen Aspekte der Gravimetrie werden sowohl in messtechnischer als auch mathematisch/physikalischer Hinsicht untersucht. Lokale gravimetrische Datensätze werden genutzt, um Multiskalenmerkmale in geophysikalisch relevanten Signaturbändern von Gravitationsanomalien und Qua- sigeoidhöhen zu visualisieren. Wavelet-Dekorrelationen werden für ein bestimmtes Gebiet in Rheinland-Pfalz illustriert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. AG der Vermessungsverwaltungen der Länder der Bundesrepublik Deutschland: Richtlinie für den einheitlichen integrierten geodätischen Raumbezug des amtlichen Vermessungswesens in der Bundesrepublik Deutschland (RiLi-RB-AdV) (2017)

    Google Scholar 

  2. Aretz, A., Bär, K., Götz, A., Sass, I.: Outcrop analogue study of Permocarboniferous geothermal sandstone reservoir formations (northern Upper Rhine Graben, Germany): impact of mineral content, depositional environment and diagenesis on petrophysical properties. Int. J. Earth Sci. 105(5), 1431–1452 (2016)

    Article  Google Scholar 

  3. Augustin, M., Freeden, W., Nutz, H.: About the importance of the Runge-Walsh concept for gravitational field determination. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 517–560. Birkhäuser, Basel (2018)

    Chapter  Google Scholar 

  4. Bjerhammer, A.: A New Theory of Gravimetric Geodesy. Geodesy Division Report of the Royal Institute of Technology, Stockholm (1963)

    Google Scholar 

  5. Blick, C.: Multiscale Potential Methods in Geothermal Research: Decorrelation Reflected Post-Processing and Locally Based Inversion. Ph.D. thesis, Geomathematics Group, University of Kaiserslautern (2015)

    Google Scholar 

  6. Blick, C., Freeden, W., Nutz, H.: Feature extraction of geological signatures by multiscale gravimetry. GEM Int. J. Geomath. 8(1), 57–83 (2016)

    Article  Google Scholar 

  7. Blick, C., Freeden, W., Nutz, H.: Gravimetry and exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 687–751. Birkhäuser, Basel (2018)

    Chapter  Google Scholar 

  8. Bruns, E.H.: Die Figur der Erde. Königl. Preussisch. Geodätisches Institut, P. Stankiewicz Buchdruckerei, Berlin (1878)

    Google Scholar 

  9. Bundesanstalt für Geowissenschaften und Rohstoffe. Geological Map of Germany 1: 1,000,000 (GK1000), (c). BGR, Hannover (2014)

    Google Scholar 

  10. ESA: The Nine Candidate Earth Explorer Missions. Publications Division ESTEC, Noordwijk, SP-1196(1) (1996)

    Google Scholar 

  11. ESA: European Views on Dedicated Gravity Field Missions: GRACE and GOCE. An Earth Sciences Division Consultation Document. ESD-MAG-REP-CON-001 (1998)

    Google Scholar 

  12. ESA: The Nine Candidate Earth Explorer Missions. Publications Division ESTEC, Noordwijk, SP-1233(1). Report for mission selection of the four candidate earth explorer missions (1999)

    Google Scholar 

  13. Fehlinger, T.: Multiscale Formulations for the Disturbing Potential and the Deflections of the Vertical in Locally Reflected Physical Geodesy. Ph.D. thesis, Geomathematics Group, University of Kaiserslautern (2009)

    Google Scholar 

  14. Feldmann-Westendorff, U., Liebsch, G., Sacher, M., Müller, J., Jahn, C., Klein, W., Liebig, A., Westphal, K.: Das Projekt zur Erneuerung des DHHN: Ein Meilenstein zur Realisierung des integrierten Raumbezugs in Deutschland. ZfV 5, 354–367 (2016)

    Google Scholar 

  15. Foulger, G., Natland, J., Presnall, D., Anderson, D. (eds.): Plates, Plumes, and Paradigms. Geological Society of America, Boulder (2005)

    Google Scholar 

  16. Freeden, W.: On integral formulas of the (unit) sphere and their application to numerical computation of integrals. Computing 25, 131–146 (1980)

    Article  Google Scholar 

  17. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Leipzig (1999)

    Google Scholar 

  18. Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn, pp. 3–79. Springer, New York (2015)

    Chapter  Google Scholar 

  19. Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Min. 65(5), 304–317 (2013)

    Google Scholar 

  20. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press/Taylor & Francis, Boca Raton (2013)

    Google Scholar 

  21. Freeden, W., Gutting, M.: Special Functions of Mathematical (Geo-)Physics. Applied and Numerical Harmonic Analysis (ANHA). Birkhäuser, Basel (2013)

    Google Scholar 

  22. Freeden, W., Gutting, M.: Integration and Cubature Methods. Monographs and Research Notes in Mathematics, A Chapman & Hall Book. CRC PRess/Taylor & Francis Group, Boca Raton (2018)

    Google Scholar 

  23. Freeden, W., Mayer, C.: Multiscale solution for the Molodensky problem on regular telluroidal surfaces. Acta Geodaetica et Geophysikca Hungarica 41, 55–86 (2008)

    Article  Google Scholar 

  24. Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)

    Book  Google Scholar 

  25. Freeden, W., Nashed, M.Z.: Inverse gravimetry: background material and multiscale mollifier approaches. GEM Int. J. Geomath. 9(2), 199–264 (2018)

    Article  Google Scholar 

  26. Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. GEM Int. J. Geomath. 2, 177–218 (2011)

    Article  Google Scholar 

  27. Freeden, W., Nutz, H.: Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 315–458. Birkhäuser, Basel (2018)

    Chapter  Google Scholar 

  28. Freeden, W., Schreiner, M.: Mathematical Geodesy: Its Role, Its Aim, and Its Potential. In: Freeden, W. (ed.) Handbuch der Mathematischen Geodäsie. Springer Spektrum, Heidelberg (2019)

    Chapter  Google Scholar 

  29. Freeden, W., Schreiner, M.: Local multiscale modelling of geoid undulations from deflections of the vertical. J. Geod. 79, 641–651 (2006)

    Article  Google Scholar 

  30. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences (A Scalar, Vectorial, and Tensorial Setup). Springer, Heidelberg (2009)

    Google Scholar 

  31. Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterb. 56, 53–77 (2008)

    Article  Google Scholar 

  32. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon/Oxford (1998)

    Google Scholar 

  33. Freeden, W., Fehlinger, T., Mayer, C., Schreiner, M.: On the local multiscale determination of the Earth’s disturbing potential from discrete deflections of the vertical. Comput. Geosci. 4, 473–490 (2008)

    Google Scholar 

  34. Freeden, W., Fehlinger, T., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geod. 83, 1171–1191 (2009)

    Article  Google Scholar 

  35. Freeden, W., Nutz, H., Rummel, R., Schreiner, M.: Satellite gravity gradiometry (SGG): methodological foundation and geomathematical advances. In: Freeden, W. (ed.) Handbuch der Mathematischen Geodäsie. Springer Spektrum, Heidelberg (2019)

    Chapter  Google Scholar 

  36. Grafarend, E.: The reference figure of the rotating earth in geometry and gravity space and an attempt to generalize the celebrated Runge-Walsh approximation theorem for irregular surfaces. GEM Int. J. Geomath. 6, 101–140 (2015)

    Article  Google Scholar 

  37. Grafarend, E.W., Aardalan, A.A., Finn, G.: Ellipsoidal vertical deflections and ellipsoidal gravity disturbances: case studies. Stud. Geophys. Geod. 50, 1–57 (2006)

    Article  Google Scholar 

  38. Grafarend, E.W., Klapp, M., Martinec, Z.: Spacetime modelling of the Earth’s gravity field by ellipsoidal harmonics. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 1st edn, pp. 159–253. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  39. Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)

    Google Scholar 

  40. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  41. Helmert, F.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie, I, II. B.G. Teubner, Leipzig (1884)

    Google Scholar 

  42. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn, vol. 2, pp. 1187–1220. Springer, Heidelberg (2010)

    Google Scholar 

  43. Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien/New York (2005)

    Google Scholar 

  44. Holota, P.: Variational methods for geodetic boundary-value problems. In: Sansò, F., Rummel, R. (eds.) Lecture Notes in Earth Sciences, vol. 65. Springer, Berlin/Heidelberg/New York (1997)

    Google Scholar 

  45. Hörmander, L.: The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62(1), 1–52 (1976)

    Article  Google Scholar 

  46. Jacobs, F., Meyer, H.: Geophysik-Signale aus der Erde. B.G. Teubner, Leipzig, and VDF Verlag, Zürich (1992)

    Google Scholar 

  47. Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin/Heidelberg/New York (1967)

    Book  Google Scholar 

  48. Krarup, T.: A Contribution to the Mathematical Foundation of Physical Geodesy. Danish Geodetic Institute, Report No. 44, Copenhagen (1969)

    Google Scholar 

  49. Krarup, T.: On Potential Theory. Danish Geodetic Institute Report No. 6, Copenhagen, Denmark (1973)

    Google Scholar 

  50. Kusche, J.: Time-variable gravity field and global deformation of the Earth. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn, vol. 1, pp. 253–268. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  51. Landesamt für Geologie und Bergbau Rheinland-Pfalz, Mainz.: Geologie von Rheinland-Pfalz: VII, 400 Seiten, 162 Abbildungen, 36 Tabellen, 3 Anlagen. E. Schweizerbart Science Publishers (Nägele u. Obermiller), Stuttgart (2005)

    Google Scholar 

  52. Landeszentrale Politische Bildung: Rheinland-Pfalz. http://rlp100seiten.de/land-und-landschaften/, Accessed 22 (2018)

  53. Liebsch, G., Schirmer, U., Reinhold, A., Falk, R., Wilmes, H., Schäfer, U., Rülke, A., Ihde, J.: Anforderungen an die Schweredatenbasis zur Quasigeoidbestimmung. Bundesamt für Kartographie und Geodäsie, Frankfurt am Main (2012)

    Google Scholar 

  54. Listing, J.B.: Über unsere jetzige Kentniss der Gestalt und Größe der Erde. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der G. A. Universität zu Göttingen 3:33–98 (1873)

    Google Scholar 

  55. Lorenz, V., Haneke, J.: Relationship between diatremes, dykes, sills, laccoliths, intrusive-extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the late Variscan intermontane Saar-Nahe Basin, SW Germany. Geol. Soc. Lond. Spec. Publ. 234, 75–124 (2004)

    Article  Google Scholar 

  56. Martinec, Z.: Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Springer, Berlin/Heidelberg/New York (1999)

    Google Scholar 

  57. Meissl, P.A.: A Study of Covariance Functions Related to the Earth’s Disturbing Potential. Scientific Report No. 151, The Ohio State University, Department of Geodetic Science, Columbus (1971)

    Google Scholar 

  58. Moe, A.: Structural development of a volcanic sequence of the Lahn area during the Variscan orogeny in the Rhenohercynian Belt (Germany). Ph.D. Thesis, Universität Heidelberg (2000)

    Google Scholar 

  59. Molodensky, M.S.: Methods for Study of the External Gravitational Field and Figure of the Earth. Translated from Russian by the Israel Program for Scientific Translations for the Office of Technical Services, U.S. Department of Commerce, Washington, DC, 1962 (1960)

    Google Scholar 

  60. Morgan, W.J.: Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    Article  Google Scholar 

  61. Moritz, H.: Recent Developments in the Geodetic Boundary Value Problem. Scientific Report. No. 266, The Ohio State University, Department of Geodetic Science, Columbus (1977)

    Google Scholar 

  62. Moritz, H.: Geodetic reference system 1980. Bull. Géod. 54(3), 395–407 (1980)

    Article  Google Scholar 

  63. Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn, vol. 1, pp. 127–158. Springer, Heidelberg (2010)

    Google Scholar 

  64. Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn, vol. 1, pp. 253–289. Springer, New York (2015)

    Chapter  Google Scholar 

  65. Nettleton, L.L.: Elementary Gravity and Magnetics for Geologists and Seismologists. Society of Exploration Geophysicists, Tulsa (1971)

    Book  Google Scholar 

  66. Nettleton, L.L.: Gravity and Magnetics in Oil Prospecting. McGraw-Hill, New York (1976)

    Google Scholar 

  67. Neumann, F.: Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. B.G. Teubner, Leipzig (1887)

    Google Scholar 

  68. Pizzetti, P.: Geodesia – sulla espressione della gravita alla superficie del geoide, supposto ellissoidico. Att. R. Acad. Lincei 3, 331–350 (1894)

    Google Scholar 

  69. Pizzetti, P.: Corpi equivalenti rispetto alla attrazione newtoniana esterna. Rom. Acc. L. Rend. 18, 211–215 (1909)

    Google Scholar 

  70. Richter, B., Wilmes, H., Franke, A., Falk, R., Reinhart, E., Torge, W.: Das Deutsche Schweregrundnetz 1994 (DSGN94). ZfV 123, 363–370 (1989)

    Google Scholar 

  71. Ritter, J., Christensen, U.: Mantle Plumes, A Multidisciplinary Approach. Springer, Berlin/Heidelberg (2007)

    Book  Google Scholar 

  72. Rivas, J.: Gravity and magnetic methods. In: Short Course on Surface Exploration for Geothermal Resources, UNU-GTP, Lake Naivasha, Kenya, (2009)

    Google Scholar 

  73. Rummel, R.: Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Sansò, S., Rummel, R. (eds.) Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Science, vol. 65, pp. 359–404. Springer, Berlin/Heidelberg (1997)

    Chapter  Google Scholar 

  74. Rummel, R.: GOCE: gravitational gradiometry in a satellite. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn, pp. 211–226. Springer, New York (2015)

    Chapter  Google Scholar 

  75. Rummel, R., Balmino, G., Johannessen, J., Visser, P., Woodworth, P.: Dedicated gravity field missions – principles and aims. J. Geodyn. 33, 3–20 (2002)

    Article  Google Scholar 

  76. SAPOS: SAPOS in Rheinland-Pfalz. https://lvermgeo.rlp.de/de/aufgaben/vermessungstec- hnischer-raumbezug/saposr/saposr-in-rheinland-pfalz/ (2018). Accessed 27 Sept 2018

  77. SAPOS: Satellitenpositionierungsdienst der Deutschen Landesvermessung. https://www.sapos.de/ (2018). Accessed 27 Sept 2018

  78. Schintgen, T.V., Förster, A.: Geology and basin structure of the Trier-Luxembourg Basin – implications for the existence of a buried Rotliegend graben. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 164(4), 615–637(23) (2013)

    Article  Google Scholar 

  79. Schlesinger, R., Cieslack, M.: Simultane Messungen mit zehn Scintrex-CG-5-Gravimetern im stationären Parallelbetrieb. AVN 8–9, 274–283 (2018)

    Google Scholar 

  80. Schuber, D., Turcotte, D., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  81. Seigel, H.O.: A Guide to High Precision Land Gravimeter Surveys. Scintrex Limited, Concord (1995)

    Google Scholar 

  82. Stokes, G.G.: On the variation of gravity at the surface of the earth. Trans. Camb. Philos. Soc. 148, 672–712 (1849)

    Google Scholar 

  83. Thönnissen, K.: Aufbau des Schwerenetzes 1. Ordnung in Rheinland-Pfalz. Nachrichtenblatt der Vermessungs- und Katasterverwaltung Rheinland-Pfalz, Koblenz (1982)

    Google Scholar 

  84. Torge, W.: Gravimetry. de Gruyter, Berlin (1989)

    Google Scholar 

  85. Torge, W.: Geodesy. de Gruyter, Berlin (1991)

    Book  Google Scholar 

  86. Torge, W., Falk, R., Franke, A., Reinhart, E., Richter, B., Sommer, M., Wilmes, H.: Das Deutsche Schweregrundnetz 1994 (DSGN94) Band I. C.H. Beck Verlag (2000)

    Google Scholar 

  87. United Nations: Current and Planned Global and Regional Navigation Satellite Systems and Satellite-Based Augmentations Systems. United Nations, New York (2010)

    Google Scholar 

  88. Vaníček, P., Kingdon, R., Santos, M.: Geoid versus quasigeoid: a case of physics versus geometry. Contrib. Geophys. Geod. 42(1), 101–117 (2012)

    Google Scholar 

  89. Vening-Meinesz, F.A.: A formula expressing the deflection of the plumb line in the gravity anomalies and some formulas for the gravity field and the gravity potential outside the geoid. Proc. Koninklijke Akad. Wet. Amsterdam 31, 315–322 (1928)

    Google Scholar 

  90. Weber, D.: Die Schweremessungen der Landesvermessung in Deutschland. ZfV 11, 370–378 (1998)

    Google Scholar 

  91. Wilson, J.: A possible origin of the Hawaiian island. Can. J. Phys. 41, 863–868 (1963)

    Article  Google Scholar 

  92. Wolf, K.: Multiscale Modeling of Classical Boundary Value Problems in Physical Geodesy by Locally Supported Wavelets. Ph.D. thesis, Geomathematics Group, University of Kaiserslautern (2009)

    Google Scholar 

  93. https://www.mineralienatlas.de/lexikon/index.php/Deutschland/Rheinland-Pfalz

Download references

Acknowledgements

The authors C. Blick, W. Freeden, Z. Hauler, and H. Nutz thank the “Federal Ministry for Economic Affairs and Energy, Berlin” and the “Project Management Jülich” (PtJ-corporate managers Dr. V. Monser, Dr. S. Schreiber) for funding the projects “GEOFÜND” (funding reference number: 0325512A, PI Prof. Dr. W. Freeden, University of Kaiserslautern, Germany) and “SPE” (funding reference number: 0324061, PI Prof. Dr. W. Freeden, CBM – Gesellschaft für Consulting, Business und Management mbH, Bexbach, Germany, corporate manager Prof. Dr. M. Bauer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Berg, G., Blick, C., Cieslack, M., Freeden, W., Hauler, Z., Nutz, H. (2019). Gravimetric Measurements, Gravity Anomalies, Geoid, Quasigeoid: Theoretical Background and Multiscale Modeling/Gravimetrische Messungen, Schwereanomalien, Geoid, Quasigeoid: Theoretischer Hintergrund und Multiskalenmodellierung. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_98-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_98-1

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics