Skip to main content

Mathematical Geodesy

Its Role, Its Aim, and Its Potential

  • Living reference work entry
  • First Online:

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Abstract

During the last decades, geodesy was influenced by two essential scenarios: First, the technological progress has completely changed the observational and measurement techniques. Modern high-speed computers and satellite-based techniques were more and more entering. Second, there was a growing public concern about the future of our planet, i.e., the change of its climate, the obligations of its environment, and about an expected shortage of its natural resources.

Simultaneously, all these aspects implied and imply the strong need of adequate mathematical structures, tools, and methods, i.e., geomathematics.

This contribution deals with today’s methodological components of the circuit mathematical geodesy characterizing the interrelations between geodesy and geomathematics with respect to origin and foundation, constituting ingredients, scientific role as well as perspective potential.

This introductory contribution represents a collection of known ideas and concepts from different sources in geodetic and geomathematical literature, however, in a new consistent setup and innovatively structured form.

Zusammenfassung

Während der letzten Dekaden war Geodäsie von zwei wesentlichen Szenarien beeinflusst: Zum einen hat der technologische Fortschritt die Beobachtungs- und Messmethoden vollständig geändert. Moderne Hochleistungsrechner und satellitenbasierte Techniken kamen mehr und mehr zum Zuge. Zum anderen gab es eine wachsende Besorgnis in der Bevölkerung um die Zukunft unseres Planeten, d. h. den Wechsel seines Klimas, die Belange seiner Umwelt und die erwartete Verknappung seiner natürlicher Ressourcen.

Alle diese Aspekte implizier(t)en simultan den starken Bedarf an adäquaten mathematischen Strukturen, Hilfsmitteln und Methoden, kurzum an Geomathematik.

Der vorliegende Beitrag beschäftigt sich mit den heutigen methodologischen Komponenten des Kreislaufs Mathematische Geodäsie, der die gegenseitige Interrelation von Geodäsie und Geomathematik bezüglich Ursprung und Grundlegung, konstituierender Bestandteile, wissenschaftlicher Rolle sowie perspektivi- schem Potential charakterisiert.

Dieser einleitende Beitrag stellt eine Sammlung bekannter Ideen und Konzepte aus verschiedenen Quellen geodätisches und geomathematisches Literatur dar, allerdings in einer neuartigen konsistenten Zusammenstellung und innovativ strukturierten Form.

This chapter is part of the series Handbuch der Geodäsie, volume “Mathematical Geodesy/ Mathematische Geodäsie”, edited by Willi Freeden, Kaiserslautern.

This is a preview of subscription content, log in via an institution.

References

  1. Anderson, J.M., Mikhail, E.M.: Surveying: Theory and Practice. McGraw Hill, Boston (1998)

    Google Scholar 

  2. Blick, C.: Multiscale Potential Methods in Geothermal Research: Decorrelation Reflected Post-Processing and Locally Based Inversion. PhD-Thesis, University of Kaiserslautern, Geomathematics Group, Verlag Dr. Hut, Munich, 2015

    Google Scholar 

  3. Blick, C., Freeden, W.: Spherical spline application to radio occultation data. J. Geodetic Sci. 1, 379–396 (2011)

    Article  Google Scholar 

  4. Blick, C., Freeden, W., Nutz, H.: Feature extraction of geological signatures by multiscale gravimetry. GEM Int. J. Geomath. 8, 57–83 (2017)

    Article  Google Scholar 

  5. Blick, C., Freeden, W., Nutz, H.: Gravimetry and exploration. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Birkhäuser/Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Google Scholar 

  6. Bruns, H.: Die Figur der Erde “Ein Beitrag zur europäischen Gradmessung”. P. Stankiewicz, Berlin (1878)

    Google Scholar 

  7. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart/Leipzig (1999)

    Google Scholar 

  8. Freeden, W.: Geomathematik, was ist das überhaupt? Jahresb. Deutsch. Mathem. Vereinigung (DMV) 111, 125–152 (2009)

    Google Scholar 

  9. Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 3–78. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  10. Freeden, W.: In: Freeden, W., Nashed, M.Z. (eds.) Introduction of Handbook of Mathematical Geodesy, iX–XIV. Birkhäuser/Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Google Scholar 

  11. Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World Mining 65, 1–15 (2013)

    Google Scholar 

  12. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/London/New York (2013)

    Google Scholar 

  13. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon/Oxford (1998)

    Google Scholar 

  14. Freeden, W., Kersten, H.: The geodetic boundary-value problem using the known surface of the Earth, vol. 29. Veröff Geod Inst RWTH, Aachen (1980)

    Google Scholar 

  15. Freeden, W., Kersten, H.: A constructive approximation theorem for the oblique derivative problem in potential theory. Math. Methods Appl. Sci. 4, 104–114 (1981)

    Article  Google Scholar 

  16. Freeden, W., Mayer, C.: Multiscale solution for the molodensky problem on regular telluroidal surfaces. Acta Geod. Geophys. Hung. 41, 55–86 (2006)

    Article  Google Scholar 

  17. Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)

    Book  Google Scholar 

  18. Freeden, W., Michel, V., Simons, F.J.: Spherical harmonics based special function systems and constructive approximation methods. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 753–820. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  19. Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to ill-posed problems. GEM Int. J. Geomath. https://doi.org/10.1007/s13137-017-0100-0,2017

  20. Freeden, W., Nashed, M.Z.: Ill-posed problems: operator methodologies of resolution and regularization. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 201–314. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  21. Freeden, W., Nashed, M.Z.: Gravimetry as an ill-posed problem in mathematical geodesy. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 641–686. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  22. Freeden, W., Nashed, M.Z., Schreiner, M.: Spherical Sampling. Geosystems Mathematics. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Book  Google Scholar 

  23. Freeden, W., Nutz, H.: Geodetic observables and their mathematical treatment in multiscale framework. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 315–458. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  24. Freeden, W., Nutz, H., Schreiner, M.: Geomathematical advances in satellite gravity gradiometry (SGG). In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics, pp. 501–604. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Chapter  Google Scholar 

  25. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)

    Google Scholar 

  26. Groten, E.: Geodesy and the Earth’s Gravity Field I + II. Dümmler, Bonn (1979)

    Google Scholar 

  27. Göttl, F., Rummel, R.: A geodetic view on isostatic models. Pure Appl. Geophys. 166, 1247–1260 (2009)

    Article  Google Scholar 

  28. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 49–52 (1902)

    Google Scholar 

  29. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  30. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Reprint, Institut of Physical Geodesy, Technical University Graz (1981)

    Google Scholar 

  31. Helmert, F.R.: Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie, vol. 1. Teubner, Leipzig (1880)

    Google Scholar 

  32. Hofmann-Wellenhof, B., Moritz, H.: Physical Geodesy. Springer, Wien/New York (2005)

    Google Scholar 

  33. Hörmander, L.: Pseudodifferential Operators. Commun. Pure Appl. Math. 18, 501–517 (1965)

    Article  Google Scholar 

  34. Hörmander, L.: The Boundary Problems of Physical Geodesy. The Royal Institute of Technology, Division of Geodesy, Report 9, Stockholm (1975)

    Google Scholar 

  35. Klein, F.: Elementarmathematik III. Die Grundlagen der Mathematischen Wissenschaften, Band 16. Springer, Berlin (1928)

    Chapter  Google Scholar 

  36. Koch, K.R., Pope, A.J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the Earth. Bulletin Géodeséque 106, 467–476 (1972)

    Article  Google Scholar 

  37. Lambeck, K.: The Earth’s Variable Rotation: Geophysical Causes and Consequences. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  38. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Shinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA/TP-1998-206861, NASA Goddard Space Flight Center, Greenbelt (1998)

    Google Scholar 

  39. Listing, J.B.: Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrichsche Verlagsbuchhandlung, Göttingen (1873)

    Google Scholar 

  40. Marussi, A.: Intrinsic Geodesy. Springer. Berlin/Heidelberg (1985)

    Book  Google Scholar 

  41. Misner, C.W., Thorne, J.A., Wheeler, J.A.: Gravitation. Freeman and Company, San Francisco (1973)

    Google Scholar 

  42. Molodensky, M.S., Eremeev, V.F., Yurkina, M.I.: Methods for Study of the External Gravitational Field and Figure of the Earth. Trudy TSNIIGAiK, Geodezizdat, Moscow, 131, 1960. English translat.: Israel Program for Scientific Translation, Jerusalem (1962)

    Google Scholar 

  43. Moritz, H.: Geodesy and Mathematics. Zeszyty Naukowe Akademii Görniczo-Hutniezej I.M. Stanislawa Staszica, No. 780, Geodezja, 63, pp. 38–43, Krakow (1981)

    Google Scholar 

  44. Moritz, H.: Classical Physical Geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 253–290. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  45. Moritz, H., Mueller, I.I.: Earth Rotation. Ugar, New York (1987)

    Google Scholar 

  46. Müller, C.: Aspects of differential equations in mathematical physics. In: Langer, R.E. (ed.) Partial Differential Equations and Continuum Mechanics, pp. 3–8. The University of Wisconsin Press, Madison (1961)

    Google Scholar 

  47. Neumann, F.: Vorlesungen über die Theorie des Potentials und der Kugelfunktionen, pp. 135–154. Teubner, Leipzig (1887)

    Google Scholar 

  48. Oberg, J.: Space myths and misconceptions. Omni 15(7), 38–40 (1993)

    Google Scholar 

  49. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., John K., Factor, J.K.: The development and evaluation of the Earth gravitational model 2008 (EGM2008). J. Geophys. Res.: Solid Earth (1978–2012) 117(B4) (2012). https://doi.org/40.1029/2011JB008916

    Google Scholar 

  50. Pizzetti, P.: Corpi equivalenti rispetto alla attrazione newtoniana esterna. Rom. Acc. L. Rend. 18, 211–215 (1909)

    Google Scholar 

  51. Pizzetti, P.: Sopra il Calcoba Tesrico delle Deviazioni del Geoide dall’ Ellissoide. Att. R Accad. Sci. Torino, 46, 331–350 (1910)

    Google Scholar 

  52. Rummel, R.: Geodesy’s Contribution to Geophysics. ISR Interdiscipl. Sci. Rev. 9(2), 113–122 (1984)

    Article  Google Scholar 

  53. Rummel, R.: Geodesy. In: Nierenberg, W.A. (ed.) Encyclopedia of Earth System Science, vol. 2, pp. 253–262. Academic Press, New York (1992)

    Google Scholar 

  54. Rummel, R.: Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Rummel, R., Sanso, F. (eds.) Lecture Notes in Earth Science, vol. 65, pp. 359–404. Springer, Berlin (1997)

    Google Scholar 

  55. Rummel, R.: Dynamik aus der Schwere—Globales Gravitationsfeld. In: An den Fronten der Forschung. Kosmos – Erde – Leben, Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte (122. Versammlung, Halle), 69–77 (2002)

    Google Scholar 

  56. Rummel, R.: Geodäsie in Zeiten des Wandels – Versuch einer Standortbestimmung. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 139, 211–216 (2014)

    Google Scholar 

  57. Rummel, R., Sünkel, H., Tscherning, C.C.: Comparison of global topographic/isostatic models to the Earth’s observed gravity field.. Department of Geodetic Science and Surveying, Ohio State University, Report No. 388 (1988)

    Google Scholar 

  58. Runge, C.: Zur Theorie der eindeutigen analytischen Funktionen. Acta Math. 6, 229–234 (1885)

    Article  Google Scholar 

  59. Sonar, T.: 3000 Jahre Analysis. Springer, Berlin/Heidelberg/New York (2011)

    Book  Google Scholar 

  60. Stokes, G.G.: On the variation of gravity at the surface of the Earth. Trans. Cambr. Phil. Soc. 148, 672–712 (1849)

    Google Scholar 

  61. Torge, W., Müller, J.: Geodesy. De Gruyter (2012)

    Google Scholar 

  62. Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc. 35, 499–544 (1929)

    Article  Google Scholar 

  63. https://web.archive.org/web/20160112123725/http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-001138.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Freeden, W., Schreiner, M. (2018). Mathematical Geodesy. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_91-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_91-1

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics