Skip to main content

A Mathematical View on Spin-Weighted Spherical Harmonics and Their Applications in Geodesy

  • Living reference work entry
  • First Online:

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

Abstract

The spin-weighted spherical harmonics (by Newman and Penrose) form an orthonormal basis of on the unit sphere Ω and have a huge field of applications. Mainly, they are used in quantum mechanics and geophysics for the theory of gravitation and in early universe and classical cosmology. Furthermore, they have also applications in geodesy. The quantity of formulations conditioned this huge spectrum of versatility. Formulations we use are for example given by the Wigner D-function, by a spin raising and spin lowering operator or as a function of spin weight.

We present a unified mathematical theory which implies the collection of already known properties of the spin-weighted spherical harmonics. We recapitulate this in a mathematical way and connect it to the notation of the theory of spherical harmonics. Here, the fact that the spherical harmonics are the spin-weighted spherical harmonics with spin weight zero is useful.

Furthermore, our novel mathematical approach enables us to prove some previously unknown properties. For example, we can formulate new recursion relations and a Christoffel-Darboux formula. Moreover, it is known that the spin-weighted spherical harmonics are the eigenfunctions of a differential operator. In this context, we found Green’s second surface identity for this differential operator and the fact that the spin-weighted spherical harmonics are the only eigenfunctions of this differential operator.

This is a preview of subscription content, log in via an institution.

References

  1. Bieberbach, L.: Theorie der Differentialgleichungen. Springer, Heidelberg (1979)

    Book  Google Scholar 

  2. Bouzas, A.O.: Addition theorems for spin spherical harmonics: I. Preliminaries. J. Phys. A Math. Theor. 44(16), 165301 (2011)

    Article  Google Scholar 

  3. Bouzas, A.O.: Addition theorems for spin spherical harmonics: II. Results. J. Phys. A Math. Theor. 44(16), 165302 (2011)

    Article  Google Scholar 

  4. Burridge, R.: Spherically symmetric differential equations, the rotation group, and tensor spherical functions. Math. Proc. Camb. Philos. Soc. 65(1), 157–175 (1969)

    Article  Google Scholar 

  5. Campbell, W.B.: Tensor and spinor spherical harmonics and the spin-s harmonics sYlm(θ, ϕ). J. Math. Phys. 12(8), 1763–1770 (1971)

    Article  Google Scholar 

  6. Dahlen, F.A., Tromp, J.: Theoretical Global Seismology. Princeton University Press, Princeton (1998)

    Google Scholar 

  7. Dhurandhar, S.V., Tinto, M.: Astronomical observations with a network of detectors of gravitational waves – I. Mathematical framework and solution of the five detector problem. Mon. Not. R. Astron. Soc. 234(3), 663–676 (1988)

    Article  Google Scholar 

  8. Dray, T.: The relationship between monopole harmonics and spin-weighted spherical harmonics. J. Math. Phys. 26(5), 1030–1033 (1985)

    Article  Google Scholar 

  9. Eastwood, M., Tod, P.: Edth – a differential operator on the sphere. Math. Proc. Camb. Philos. Soc. 92(2), 317–330 (1982)

    Article  Google Scholar 

  10. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton (1957)

    Book  Google Scholar 

  11. Fengler, M.J., Freeden, W.: A nonlinear Galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible Navier-Stokes equation on the sphere. SIAM J. Sci. Comput. 27(3), 967–994 (2005)

    Article  Google Scholar 

  12. Freeden, W., Gervens, T.: Vector spherical spline interpolation – basic theory and computational aspects. Math. Methods Appl. Sci. 16(3), 151–183 (1993)

    Article  Google Scholar 

  13. Freeden, W., Gervens, T., Schreiner, M.: Tensor spherical harmonics and tensor spherical splines. Manuscr. Geodaet. 19, 70–100 (1994)

    Google Scholar 

  14. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    Google Scholar 

  15. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences. Springer, Heidelberg (2009)

    Google Scholar 

  16. Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin-s spherical harmonics and . J. Math. Phys. 8(11), 2155–2161 (1967)

    Google Scholar 

  17. Hill, E.L.: The theory of vector spherical harmonics. Am. J. Phys. 22(4), 211–214 (1954)

    Article  Google Scholar 

  18. Hu, W., White, M.: CMB anisotropies: total angular momentum method. Phys. Rev. D 56(2), 596–615 (1997)

    Article  Google Scholar 

  19. Kostelec, P.J., Maslen, D.K., Healy, D.M., Rockmore, D.N.: Computational harmonic analysis for tensor fields on the two-sphere. J. Comput. Phys. 162(2), 514–535 (2000)

    Article  Google Scholar 

  20. Lewis, A., Challinor, A., Turok, N.: Analysis of CMB polarization on an incomplete sky. Phys. Rev. D 65(2), 023505 (2002)

    Article  Google Scholar 

  21. Michel, V.: Lectures on Constructive Approximation. Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser Verlag, New York (2013)

    Google Scholar 

  22. Newman, E.T., Penrose, R.: Note on the Bondi-Metzner-Sachs group. J. Math. Phys. 7(5), 863–870 (1966)

    Article  Google Scholar 

  23. Penrose, R., Rindler, W.: Spinors and Space-Time Volume 1: Two-Spinor Calculus and Relativistic Fields. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  24. Penrose, R., Rindler, W.: Spinors and Space-Time Volume 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge University Press, Cambridge (1986)

    Book  Google Scholar 

  25. Phinney, R.A., Burridge, R.: Representation of the elastic-gravitational excitation of a spherical Earth model by generalized spherical harmonics. Geophys. J. Int. 34(4), 451–487 (1973)

    Article  Google Scholar 

  26. Schreiner, M.: Tensor Spherical Harmonics and Their Application in Satellite Gradiometry. Ph.D. thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern (1994)

    Google Scholar 

  27. Seibert, K.: Spin-Weighted Spherical Harmonics and Their Application for the Construction of Tensor Slepian Functions on the Spherical Cap. Ph.D. thesis, Geomathematics Group, Department of Mathematics, University of Siegen (2018)

    Google Scholar 

  28. Sharma, S.K., Khanal, U.: Perturbation of FRW spacetime in NP formalism. Int. J. Mod. Phys. D 23(2), 1450017 (2014)

    Article  Google Scholar 

  29. Tamm, I.: Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles. Z. Phys. 71(3–4), 141–150 (1931)

    Article  Google Scholar 

  30. Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52(2), 299–339 (1980)

    Article  Google Scholar 

  31. Torres del Castillo, G.F.: Spin-weighted spherical harmonics and their applications. Rev. Mex. Fis. 53(2), 125–134 (2007)

    Google Scholar 

  32. Varshalovich, D.A., Moskalev, A., Khersonskii, V.: Quantum Theory of Angular Momentum. World Scientific Publishing Co Pte Ltd, Singapore (1988)

    Book  Google Scholar 

  33. Voigt, A., Wloka, J.: Hilberträume und elliptische Differentialoperatoren. Bibliographisches Institut, Mannheim (1975)

    Google Scholar 

  34. Wiaux, Y., Jacques, L., Vielva, P., Vandergheynst, P.: Fast directional correlation on the sphere with steerable filters. Astrophys. J. 652(1), 820–832 (2006)

    Article  Google Scholar 

  35. Wiaux, Y., Jacques, L., Vandergheynst, P.: Fast spin ± 2 spherical harmonics transforms and application in cosmology. J. Comput. Phys. 226(2), 2359–2371 (2007)

    Article  Google Scholar 

  36. Wu, T.T., Yang, C.N.: Some properties of monopole harmonics. Phys. Rev. D 16(4), 1018–1021 (1977)

    Article  Google Scholar 

  37. Zaldarriaga, M., Seljak, U.: All-sky analysis of polarization in the microwave background. Phys. Rev. D 55(4), 1830–1840 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Michel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Michel, V., Seibert, K. (2018). A Mathematical View on Spin-Weighted Spherical Harmonics and Their Applications in Geodesy. In: Freeden, W., Rummel, R. (eds) Handbuch der Geodäsie. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46900-2_102-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46900-2_102-1

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46900-2

  • Online ISBN: 978-3-662-46900-2

  • eBook Packages: Springer Referenz Naturwissenschaften

Publish with us

Policies and ethics